devshaheen's picture
update readme
dc5a60a verified
|
raw
history blame
2.4 kB
---
license: mit
datasets:
- mlabonne/guanaco-llama2-1k
language:
- en
base_model:
- NousResearch/Llama-2-7b-chat-hf
pipeline_tag: text-generation
library_name: transformers
finetuned_model: true
model_type: causal-lm
finetuned_task: instruction-following
tags:
- instruction-following
- text-generation
- fine-tuned
- llama2
- causal-language-model
- QLoRa
- 4-bit-quantization
- low-memory
- training-optimized
metrics:
- accuracy
- loss
---
# Llama-2-7B-Chat Fine-Tuned Model
This model is a fine-tuned version of **Llama-2-7B-Chat** model, optimized for instruction-following tasks. It has been trained on the `mlabonne/guanaco-llama2-1k` dataset and is optimized for efficient text generation across various NLP tasks, including question answering, summarization, and text completion.
## Model Details
- **Base Model**: NousResearch/Llama-2-7b-chat-hf
- **Fine-Tuning Task**: Instruction-following
- **Training Dataset**: mlabonne/guanaco-llama2-1k
- **Optimized For**: Text generation, question answering, summarization, and more.
- **Fine-Tuned Parameters**:
- **LoRA** (Low-Rank Adaption) applied for efficient training with smaller parameter updates.
- Quantized to **4-bit** for memory efficiency and better GPU utilization.
- Training includes **gradient accumulation**, **gradient checkpointing**, and **weight decay** to prevent overfitting and enhance memory efficiency.
## Usage
You can use this fine-tuned model with the Hugging Face `transformers` library. Below is an example of how to load and use the model for text generation.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load pre-trained model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("YOUR_HUGGINGFACE_USERNAME/llama-2-7b-chat-finetune")
model = AutoModelForCausalLM.from_pretrained("YOUR_HUGGINGFACE_USERNAME/llama-2-7b-chat-finetune")
# Example text generation
input_text = "What is the capital of France?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
@misc{llama-2-7b-chat-finetune,
author = {Shaheen Nabi},
title = {Fine-tuned Llama-2-7B-Chat Model},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/devshaheen/llama-2-7b-chat-finetune}},
}