alzheimer_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3183
  • F1: 0.8946

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 128 0.8686 0.5548
No log 2.0 256 0.8457 0.6087
No log 3.0 384 0.7396 0.6478
0.8172 4.0 512 0.6833 0.6826
0.8172 5.0 640 0.6280 0.7205
0.8172 6.0 768 0.5347 0.7727
0.8172 7.0 896 0.5108 0.7909
0.5292 8.0 1024 0.4707 0.8078
0.5292 9.0 1152 0.4477 0.8302
0.5292 10.0 1280 0.4075 0.8511
0.5292 11.0 1408 0.4263 0.8380
0.3498 12.0 1536 0.3558 0.8756
0.3498 13.0 1664 0.3768 0.8558
0.3498 14.0 1792 0.3412 0.8701
0.3498 15.0 1920 0.3028 0.8952

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dewifaj/alzheimer_classification

Finetuned
(1791)
this model

Spaces using dewifaj/alzheimer_classification 2