metadata
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- NousResearch/Nous-Hermes-2-Yi-34B
- jondurbin/bagel-dpo-34b-v0.2
base_model:
- NousResearch/Nous-Hermes-2-Yi-34B
- jondurbin/bagel-dpo-34b-v0.2
HermesBagel-34B-v0.1
HermesBagel-34B-v0.1 is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: NousResearch/Nous-Hermes-2-Yi-34B
layer_range: [0, 60]
- model: jondurbin/bagel-dpo-34b-v0.2
layer_range: [0, 60]
merge_method: slerp
base_model: NousResearch/Nous-Hermes-2-Yi-34B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
Basic Usage
Setup
!pip install -qU transformers accelerate bitsandbytes
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig
)
import torch
model = "dfurman/HermesBagel-34B-v0.1"
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=nf4_config,
)
messages = [
{"role": "user", "content": "What is a large language model?"},
]
print("\n\n*** Prompt:")
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
return_tensors="pt",
)
print(tokenizer.decode(input_ids[0]))
print("\n\n*** Generate:")
with torch.autocast("cuda", dtype=torch.bfloat16):
output = model.generate(
input_ids=input_ids.to("cuda"),
max_new_tokens=256,
return_dict_in_generate=True,
)
response = tokenizer.decode(
output["sequences"][0][len(input_ids[0]):],
skip_special_tokens=True
)
print(response)