|
--- |
|
license: apache-2.0 |
|
tags: |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- NousResearch/Nous-Hermes-2-Yi-34B |
|
- jondurbin/bagel-dpo-34b-v0.2 |
|
base_model: |
|
- NousResearch/Nous-Hermes-2-Yi-34B |
|
- jondurbin/bagel-dpo-34b-v0.2 |
|
--- |
|
|
|
# HermesBagel-34B-v0.1 |
|
|
|
HermesBagel-34B-v0.1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) |
|
* [jondurbin/bagel-dpo-34b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-34b-v0.2) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- model: NousResearch/Nous-Hermes-2-Yi-34B |
|
layer_range: [0, 60] |
|
- model: jondurbin/bagel-dpo-34b-v0.2 |
|
layer_range: [0, 60] |
|
merge_method: slerp |
|
base_model: NousResearch/Nous-Hermes-2-Yi-34B |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
``` |
|
|
|
## Basic Usage |
|
|
|
<details> |
|
|
|
<summary>Setup</summary> |
|
|
|
```python |
|
!pip install -qU transformers accelerate bitsandbytes |
|
|
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
BitsAndBytesConfig |
|
) |
|
import torch |
|
|
|
model = "dfurman/HermesBagel-34B-v0.1" |
|
nf4_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
quantization_config=nf4_config, |
|
) |
|
``` |
|
|
|
</details> |
|
|
|
|
|
```python |
|
messages = [ |
|
{"role": "user", "content": "What is a large language model?"}, |
|
] |
|
|
|
print("\n\n*** Prompt:") |
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
return_tensors="pt", |
|
) |
|
print(tokenizer.decode(input_ids[0])) |
|
|
|
print("\n\n*** Generate:") |
|
with torch.autocast("cuda", dtype=torch.bfloat16): |
|
output = model.generate( |
|
input_ids=input_ids.to("cuda"), |
|
max_new_tokens=256, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
response = tokenizer.decode( |
|
output["sequences"][0][len(input_ids[0]):], |
|
skip_special_tokens=True |
|
) |
|
print(response) |
|
``` |
|
|