MobileSAM / README.md
dhkim2810's picture
Update README.md
545c86c
|
raw
history blame
3.07 kB
---
license: mit
---
# Faster Segement Anything (MobileSAM)
<!-- Provide a quick summary of what the model is/does. -->
- **Repository:** [Github - MobileSAM](https://github.com/ChaoningZhang/MobileSAM)
- **Paper:** [Faster Segment Anything: Towards Lightweight SAM for Mobile Applications](https://arxiv.org/pdf/2306.14289.pdf)
- **Demo:** [HuggingFace Demo](https://huggingface.co/dhkim2810/MobileSAM)
**MobileSAM** performs on par with the original SAM (at least visually) and keeps exactly the same pipeline as the original SAM except for a change on the image encoder. Specifically, we replace the original heavyweight ViT-H encoder (632M) with a much smaller Tiny-ViT (5M). On a single GPU, MobileSAM runs around 12ms per image: 8ms on the image encoder and 4ms on the mask decoder.
The comparison of ViT-based image encoder is summarzed as follows:
Image Encoder | Original SAM | MobileSAM
:------------:|:-------------:|:---------:
Paramters | 611M | 5M
Speed | 452ms | 8ms
Original SAM and MobileSAM have exactly the same prompt-guided mask decoder:
Mask Decoder | Original SAM | MobileSAM
:-----------------------------------------:|:---------:|:-----:
Paramters | 3.876M | 3.876M
Speed | 4ms | 4ms
The comparison of the whole pipeline is summarzed as follows:
Whole Pipeline (Enc+Dec) | Original SAM | MobileSAM
:-----------------------------------------:|:---------:|:-----:
Paramters | 615M | 9.66M
Speed | 456ms | 12ms
## Acknowledgement
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
<details>
<summary>
<a href="https://github.com/facebookresearch/segment-anything">SAM</a> (Segment Anything) [<b>bib</b>]
</summary>
```bibtex
@article{kirillov2023segany,
title={Segment Anything},
author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
journal={arXiv:2304.02643},
year={2023}
}
```
</details>
<details>
<summary>
<a href="https://github.com/microsoft/Cream/tree/main/TinyViT">TinyViT</a> (TinyViT: Fast Pretraining Distillation for Small Vision Transformers) [<b>bib</b>]
</summary>
```bibtex
@InProceedings{tiny_vit,
title={TinyViT: Fast Pretraining Distillation for Small Vision Transformers},
author={Wu, Kan and Zhang, Jinnian and Peng, Houwen and Liu, Mengchen and Xiao, Bin and Fu, Jianlong and Yuan, Lu},
booktitle={European conference on computer vision (ECCV)},
year={2022}
```
</details>
**BibTeX:**
```bibtex
@article{mobile_sam,
title={Faster Segment Anything: Towards Lightweight SAM for Mobile Applications},
author={Zhang, Chaoning and Han, Dongshen and Qiao, Yu and Kim, Jung Uk and Bae, Sung Ho and Lee, Seungkyu and Hong, Choong Seon},
journal={arXiv preprint arXiv:2306.14289},
year={2023}
}
```