dhritic99's picture
dhritic99/vit-base-brain-alzheimer-detection
ddf6955 verified
|
raw
history blame
2.54 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-brain-alzheimer-detection
    results: []

vit-base-brain-alzheimer-detection

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2428
  • Accuracy: 0.9508

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9772 0.7812 200 0.9400 0.5801
0.7451 1.5625 400 0.7947 0.6553
0.5701 2.3438 600 0.7642 0.7236
0.3704 3.125 800 0.5532 0.7744
0.2906 3.9062 1000 0.4423 0.8555
0.1636 4.6875 1200 0.3226 0.9004
0.0837 5.4688 1400 0.3483 0.9023
0.0368 6.25 1600 0.2423 0.9395
0.063 7.0312 1800 0.3091 0.9277
0.047 7.8125 2000 0.3907 0.9023
0.0127 8.5938 2200 0.2002 0.9561
0.0102 9.375 2400 0.3001 0.9307
0.0086 10.1562 2600 0.1998 0.9512
0.0073 10.9375 2800 0.1932 0.9590
0.0064 11.7188 3000 0.1988 0.9561
0.0056 12.5 3200 0.1993 0.9580
0.0049 13.2812 3400 0.2047 0.9590

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1