vit-base-brain-dementia-detection
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2613
- Accuracy: 0.9461
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.728 | 1.9531 | 500 | 0.7510 | 0.6660 |
0.2752 | 3.9062 | 1000 | 0.4706 | 0.8311 |
0.1104 | 5.8594 | 1500 | 0.2167 | 0.9336 |
0.0297 | 7.8125 | 2000 | 0.2228 | 0.9424 |
0.009 | 9.7656 | 2500 | 0.1474 | 0.9668 |
0.006 | 11.7188 | 3000 | 0.1493 | 0.9648 |
0.0049 | 13.6719 | 3500 | 0.1507 | 0.9668 |
0.0038 | 15.625 | 4000 | 0.1553 | 0.9668 |
0.0033 | 17.5781 | 4500 | 0.1585 | 0.9658 |
0.0029 | 19.5312 | 5000 | 0.1605 | 0.9658 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for dhritic99/vit-base-brain-dementia-detection
Base model
google/vit-base-patch16-224-in21k