vit-base-brain-dementia-detection

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2613
  • Accuracy: 0.9461

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.728 1.9531 500 0.7510 0.6660
0.2752 3.9062 1000 0.4706 0.8311
0.1104 5.8594 1500 0.2167 0.9336
0.0297 7.8125 2000 0.2228 0.9424
0.009 9.7656 2500 0.1474 0.9668
0.006 11.7188 3000 0.1493 0.9648
0.0049 13.6719 3500 0.1507 0.9668
0.0038 15.625 4000 0.1553 0.9668
0.0033 17.5781 4500 0.1585 0.9658
0.0029 19.5312 5000 0.1605 0.9658

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for dhritic99/vit-base-brain-dementia-detection

Finetuned
(1797)
this model