vit-base-brain-dementia-detection1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2209
  • Accuracy: 0.9516

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7193 1.9531 500 0.7950 0.6592
0.249 3.9062 1000 0.3423 0.9023
0.0774 5.8594 1500 0.1845 0.9492
0.0306 7.8125 2000 0.1809 0.9570
0.0099 9.7656 2500 0.1198 0.9717
0.0065 11.7188 3000 0.1497 0.9648
0.0053 13.6719 3500 0.1477 0.9668
0.004 15.625 4000 0.1585 0.9629

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for dhritic99/vit-base-brain-dementia-detection1

Finetuned
(1793)
this model