|
--- |
|
library_name: transformers |
|
datasets: |
|
- shawhin/phishing-site-classification |
|
base_model: |
|
- google-bert/bert-base-uncased |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This is the model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [phishing-site-classification dataset](https://huggingface.co/datasets/shawhin/phishing-site-classification) |
|
|
|
|
|
### Model Sources |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [GitHub](https://github.com/dhruvyadav89300/BERT-Phishing-Classifier) |
|
|
|
|
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
|
|
### Training Results |
|
|
|
|
|
| Epoch | Training Loss | Step | Validation Loss | Accuracy | AUC | Learning Rate | |
|
|-------|---------------|------|-----------------|----------|------|---------------| |
|
| 1 | 0.4932 | 263 | 0.4237 | 0.789 | 0.912| 0.00019 | |
|
| 2 | 0.3908 | 526 | 0.3761 | 0.824 | 0.932| 0.00018 | |
|
| 3 | 0.3787 | 789 | 0.3136 | 0.860 | 0.941| 0.00017 | |
|
| 4 | 0.3606 | 1052 | 0.4401 | 0.818 | 0.944| 0.00016 | |
|
| 5 | 0.3545 | 1315 | 0.2928 | 0.864 | 0.947| 0.00015 | |
|
| 6 | 0.3600 | 1578 | 0.3406 | 0.867 | 0.949| 0.00014 | |
|
| 7 | 0.3233 | 1841 | 0.2897 | 0.869 | 0.950| 0.00013 | |
|
| 8 | 0.3411 | 2104 | 0.3328 | 0.871 | 0.949| 0.00012 | |
|
| 9 | 0.3292 | 2367 | 0.3189 | 0.876 | 0.954| 0.00011 | |
|
| 10 | 0.3239 | 2630 | 0.3685 | 0.849 | 0.956| 0.00010 | |
|
| 11 | 0.3201 | 2893 | 0.3317 | 0.862 | 0.956| 0.00009 | |
|
| 12 | 0.3335 | 3156 | 0.2725 | 0.869 | 0.957| 0.00008 | |
|
| 13 | 0.3230 | 3419 | 0.2856 | 0.882 | 0.955| 0.00007 | |
|
| 14 | 0.3087 | 3682 | 0.2900 | 0.882 | 0.957| 0.00006 | |
|
| 15 | 0.3050 | 3945 | 0.2704 | 0.893 | 0.957| 0.00005 | |
|
| 16 | 0.3032 | 4208 | 0.2662 | 0.878 | 0.957| 0.00004 | |
|
| 17 | 0.3027 | 4471 | 0.2930 | 0.882 | 0.956| 0.00003 | |
|
| 18 | 0.2950 | 4734 | 0.2707 | 0.880 | 0.957| 0.00002 | |
|
| 19 | 0.2998 | 4997 | 0.2782 | 0.884 | 0.957| 0.00001 | |
|
| 20 | 0.2971 | 5260 | 0.2792 | 0.882 | 0.957| 0.00000 | |
|
|
|
#### Final Training Summary |
|
|
|
- **Total Training Runtime:** 555.4381 seconds |
|
- **Final Training Loss:** 0.3372 |
|
- **Train Samples per Second:** 75.616 |
|
- **Eval Accuracy (Best Epoch):** 0.893 (Epoch 15) |
|
- **Eval AUC (Best Epoch):** 0.957 (Multiple Epochs) |
|
|
|
|