twitter-roberta-base_3epoch5.64

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-irony on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2330
  • Accuracy: 0.7478
  • F1: 0.4147
  • Precision: 0.62
  • Recall: 0.3116
  • Precision Sarcastic: 0.62
  • Recall Sarcastic: 0.3116
  • F1 Sarcastic: 0.4147

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Precision Sarcastic Recall Sarcastic F1 Sarcastic
No log 1.0 44 2.1672 0.7262 0.5103 0.5238 0.4975 0.5238 0.4975 0.5103
No log 2.0 88 2.2472 0.7522 0.4150 0.6421 0.3065 0.6421 0.3065 0.4150
No log 3.0 132 2.2529 0.7464 0.4359 0.6018 0.3417 0.6018 0.3417 0.4359
No log 4.0 176 2.2045 0.7522 0.4522 0.6174 0.3568 0.6174 0.3568 0.4522
No log 5.0 220 2.2330 0.7478 0.4147 0.62 0.3116 0.62 0.3116 0.4147

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
117
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dianamihalache27/twitter-roberta-base_3epoch5.64

Finetuned
(15)
this model