|
--- |
|
tags: |
|
- autotrain |
|
- tabular |
|
- regression |
|
- tabular-regression |
|
datasets: |
|
- autotrain-uzdtm-nwkp2/autotrain-data |
|
pipeline_tag: tabular-regression |
|
library_name: transformers |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Tabular regression |
|
|
|
## Validation Metrics |
|
|
|
- r2: 0.5287307064016351 |
|
- mse: 3.103168000915719e+19 |
|
- mae: 2243863540.8 |
|
- rmse: 5570608585.168877 |
|
- rmsle: 8.027979609819264 |
|
- loss: 5570608585.168877 |
|
|
|
## Best Params |
|
|
|
- learning_rate: 0.11299209471906922 |
|
- reg_lambda: 1.95078305416454e-06 |
|
- reg_alpha: 0.03568550183373181 |
|
- subsample: 0.6486218191662874 |
|
- colsample_bytree: 0.22654368454464396 |
|
- max_depth: 1 |
|
- early_stopping_rounds: 481 |
|
- n_estimators: 20000 |
|
- eval_metric: rmse |
|
|
|
## Usage |
|
|
|
```python |
|
import json |
|
import joblib |
|
import pandas as pd |
|
|
|
model = joblib.load('model.joblib') |
|
config = json.load(open('config.json')) |
|
|
|
features = config['features'] |
|
|
|
# data = pd.read_csv("data.csv") |
|
data = data[features] |
|
|
|
predictions = model.predict(data) # or model.predict_proba(data) |
|
|
|
# predictions can be converted to original labels using label_encoders.pkl |
|
|
|
``` |