sayakpaul's picture
sayakpaul HF staff
Update README.md
cb2e660
|
raw
history blame
3.57 kB
metadata
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
tags:
  - stable-diffusion-xl
  - stable-diffusion-xl-diffusers
  - text-to-image
  - diffusers
  - controlnet
inference: false

SDXL-controlnet: Depth

These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. You can find some example images in the following.

prompt: spiderman lecture, photorealistic images_0)

Usage

Make sure to first install the libraries:

pip install accelerate transformers safetensors diffusers

And then we're ready to go:

import torch
import numpy as np
from PIL import Image

from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image


depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-depth-sdxl-1.0",
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
).to("cuda")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    vae=vae,
    variant="fp16",
    use_safetensors=True,
    torch_dtype=torch.float16,
).to("cuda")
pipe.enable_model_cpu_offload()

def get_depth_map(image):
    image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
    with torch.no_grad(), torch.autocast("cuda"):
        depth_map = depth_estimator(image).predicted_depth

    depth_map = torch.nn.functional.interpolate(
        depth_map.unsqueeze(1),
        size=(1024, 1024),
        mode="bicubic",
        align_corners=False,
    )
    depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_map = (depth_map - depth_min) / (depth_max - depth_min)
    image = torch.cat([depth_map] * 3, dim=1)

    image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
    image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
    return image


prompt = "stormtrooper lecture, photorealistic"
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
controlnet_conditioning_scale = 0.5  # recommended for good generalization

depth_image = get_depth_map(image)

images = pipe(
    prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale,
).images
images[0]

images[0].save(f"stormtrooper.png")

To more details, check out the official documentation of StableDiffusionXLControlNetPipeline.

Training

Our training script was built on top of the official training script that we provide here.

Training data and Compute

The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.

Batch size

Data parallel with a single gpu batch size of 8 for a total batch size of 256.

Hyper Parameters

Constant learning rate of 1e-5.

Mixed precision

fp16