digo-prayudha's picture
Update README.md
636127d verified
metadata
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets:
  - generator
library_name: peft
license: llama3.2
tags:
  - trl
  - sft
  - generated_from_trainer
  - lora
model-index:
  - name: Llama-3.2-1B-Indonesian
    results: []
language:
  - id
pipeline_tag: text-generation

Llama-3.2-1B-Indonesian

This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct that has been optimized for Indonesian language understanding and generation.

The fine-tuning process utilized Low-Rank Adaptation (LoRA) to efficiently adapt the model while minimizing computational and storage overhead. This approach enables effective fine-tuning for specific tasks or domains, particularly in the Indonesian language context.

Training and evaluation data

Ichsan2895/alpaca-gpt4-indonesian

Use WIth Transformers

import torch
from transformers import pipeline

model_id = "digo-prayudha/Llama-3.2-1B-Indonesian"
pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
messages = [
    {"role": "user", "content": "Tentukan subjek dari kalimat berikut: 'Film tersebut dirilis kemarin'."},
]
outputs = pipe(
    messages,
    max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 6
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

![Train Loss]

Framework versions

  • PEFT 0.7.2.dev0
  • Transformers 4.46.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.20.1