DijiHax.pytorch / README.md
dijihax's picture
Update README.md
141ea16 verified
|
raw
history blame
11.4 kB
---
license: deepfloyd-if-license
datasets:
- microsoft/orca-agentinstruct-1M-v1
- OpenCoder-LLM/opc-sft-stage1
- fka/awesome-chatgpt-prompts
- HuggingFaceTB/smoltalk
- alpindale/two-million-bluesky-posts
- bluesky-community/one-million-bluesky-posts
- dijihax/Dataset
- internlm/Lean-Workbook
- PleIAs/common_corpus
- O1-OPEN/OpenO1-SFT
- allenai/tulu-3-sft-mixture
- OpenCoder-LLM/RefineCode-code-corpus-meta
- OpenCoder-LLM/opc-fineweb-code-corpus
- iamtarun/python_code_instructions_18k_alpaca
- codeparrot/github-code
- nenad1002/quantum_science_research_dataset
- quantumiracle-git/robotinder-data
- open-llm-leaderboard-old/details_quantumaikr__KoreanLM-hf
- chemora/EntanglementDetectionDataSet
- glaiveai/glaive-function-calling-v2
- Salesforce/xlam-function-calling-60k
- NousResearch/hermes-function-calling-v1
- >-
Younes-Abdeahad-Software-Requirements/FNFC-Functional_Non-Functional_Classification
- cgoosen/prompt_injection_password_or_secret
- google/frames-benchmark
- Kaeyze/computer-science-synthetic-dataset
- gretelai/gretel-text-to-python-fintech-en-v1
- Vezora/Tested-143k-Python-Alpaca
- Nan-Do/instructional_code-search-net-python
- hackaprompt/hackaprompt-dataset
- hackercupai/hackercup
- OpenPipe/hacker-news
- open-phi/programming_books_llama
- kanhatakeyama/wizardlm8x22b-logical-math-coding-sft
- datatune/LogiCoT
- kanhatakeyama/LogicalDatasetsByMixtral8x22b
- dongyu0205/working-memory-capacity-of-ChatGPT
- memorylost731/linux_man_pages_library
- mmathys/openai-moderation-api-evaluation
- BAAI/IndustryCorpus2_current_affairs_government_administration
- bigcode/admin
- HuggingFaceFW/admin
- HuggingFaceFW/fineweb-edu
- HuggingFaceFV/finevideo
- lmms-lab/LLaVA-Video-178K
- Wild-Heart/Disney-VideoGeneration-Dataset
- DL3DV/DL3DV-ALL-video
- laion/laion-high-resolution
- joey234/mmlu-high_school_computer_science-neg
- sentence-transformers/embedding-training-data
- Cohere/wikipedia-22-12-en-embeddings
- philschmid/finanical-rag-embedding-dataset
- jwaters8978/web_scraper_dataset
- jwaters8978/web_scraper_dataset_2
- ammarnasr/the-stack-java-clean
- angie-chen55/javascript-github-code
- anjandash/java-8m-methods-v2
- Vikhrmodels/physics_big
- k-mktr/improved-flux-prompts-photoreal-portrait
- jacobcd52/physics-papers
- zeroshot/arxiv-biology
- joey234/mmlu-college_biology-neg
- cmcmaster/rheumatology-biologics-dataset
- HAERAE-HUB/QARV-KOEN-10M-Entangled
- Qutiba/LinuxCommands_Virsh_KVM_Docker_2
- MattCoddity/docker_ps
- adeocybersecurity/DockerCommand
- JetBrains-Research/lca-codegen-huge
- chaofengc/IQA-PyTorch-Datasets
- open-source-metrics/pytorch-image-models-dependents
- nodchip/tanuki-.nnue-pytorch-2024-07-30.1
- karpathy/fineweb-edu-100B-gpt2-token-shards
- google/code_x_glue_cc_code_completion_token
- edbeeching/gia-dataset-tokenized-2024-2
- OpenDILabCommunity/MasterMind
- LinkSoul/Chinese-LLaVA-Vision-Instructions
- hoang-quoc-trung/fusion-image-to-latex-datasets
- OpenCoder-LLM/opc-fineweb-math-corpus
- xinlai/Math-Step-DPO-10K
- hendrycks/competition_math
- meta-math/MetaMathQA
- microsoft/BiomedParseData
- Twenty1/aws-lambda-developer-guide-docs
- developer0hye/korocr
- DeveloperOats/DBPedia_Classes
- developerZoyal/full_drugs_data
- LangChainHub-Prompts/LLM_Bash
- OS-Copilot/OS-Atlas-data
- nvidia/OpenMathInstruct-2
- nvidia/HelpSteer2
language:
- en
- es
- it
- ar
- id
- zh
- ja
base_model:
- Dijitaal/DijiHax.Spooky.Pi
- Qwen/Qwen2.5-Coder-32B-Instruct
- ayjays132/Quantum-NeuralAdaptiveLearningSystem
- neuralmagic/Sparse-Llama-3.1-8B-2of4
- bigscience/bloom
- bigcode/starcoder
- bigcode/starcoder2-3b
- wolfram/Athene-V2-Chat-4.65bpw-h6-exl2
- wolfram/Mistral-Large-Instruct-2411-2.75bpw-h6-exl2
- stabilityai/stable-diffusion-3.5-large
- openai/whisper-large-v3-turbo
- black-forest-labs/FLUX.1-dev
- black-forest-labs/FLUX.1-Fill-dev
- black-forest-labs/FLUX.1-Redux-dev
- si-pbc/hertz-dev
- InstantX/FLUX.1-dev-IP-Adapter
- unsloth/Qwen2.5-Coder-32B-Instruct-128K-GGUF
- Qwen/Qwen2.5-Coder-32B-Instruct-GGUF
- Qwen/QwQ-32B-Preview
- tencent/HunyuanVideo
- tencent/HunyuanVideo-PromptRewrite
- AIDC-AI/Marco-o1
- DevQuasar/AIDC-AI.Marco-o1-GGUF
- Lightricks/LTX-Video
- NexaAIDev/OmniVLM-968M
- ali-vilab/In-Context-LoRA
- udev4096/docker-commands
- philomath-1209/programming-language-identification
- vivecccccc/phi-2_kqa-program
- Qwen/Qwen2.5-Coder-7B-Instruct
- featherless-ai-quants/Qwen-Qwen2.5-Coder-32B-Instruct-GGUF
- aws-neuron/optimum-neuron-cache
- nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme
- vuiseng9/ov-gpt2-fp32-no-cache
- RichardErkhov/vuiseng9_-_ov-gpt2-fp32-no-cache-gguf
- ntc-ai/SDXL-LoRA-slider.eye-catching
- stabilityai/stable-diffusion-3.5-large-turbo
- nvidia/NV-Embed-v2
- jinaai/jina-embeddings-v3
- nvidia/MM-Embed
- nomic-ai/nomic-embed-text-v1.5
- nomic-ai/nomic-embed-text-v1.5-GGUF
- stabilityai/stablecode-completion-alpha-3b-4k
- stabilityai/stablecode-completion-alpha-3b
- tensorblock/stablecode-completion-alpha-3b-4k-GGUF
- RaniAimlTest/multi-user-chat-open-llama-7b-v2-open-instruct-completions-only
- Iker/Llama-3-Instruct-Neurona-8b
- NeuroWhAI/ko-gemma-2-9b-it-fn
- Nexusflow/Athene-V2-Chat
- comfyanonymous/flux_text_encoders
- city96/t5-v1_1-xxl-encoder-gguf
- mlabonne/NeuralDaredevil-8B-abliterated
- Sao10K/I_am_alive_yay
metrics:
- code_eval
- competition_math
- confusion_matrix
- codeparrot/apps_metric
- bertscore
- BucketHeadP65/confusion_matrix
- precision
- perplexity
- phonemetransformers/segmentation_scores
- Aledade/extraction_evaluation
- wiki_split
- berkatil/map
- spearmanr
- ter
- chrf
- He-Xingwei/sari_metric
- KaliSurfKukt/brier_score
- LottieW/accents_unplugged_eval
- DaliaCaRo/accents_unplugged_eval
- ecody726/bertscore
- Yeshwant123/mcc
- ola13/precision_at_k
- Ikala-allen/relation_extraction
- charcut_mt
- pearsonr
- poseval
- Pipatpong/perplexity
- NCSOFT/harim_plus
- gorkaartola/metric_for_tp_fp_samples
- giulio98/code_eval_outputs
- f1
new_version: Dijitaal/DijiHax.Spooky.Pi
library_name: adapter-transformers
tags:
- chemistry
- biology
- code
- merge
- climate
- medical
- text-generation-inference
- legal
- music
- art
- moe
- finance
- not-for-all-audiences
pipeline_tag: video-text-to-text
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]