dimasik1987's picture
End of training
16e4d3f verified
|
raw
history blame
4.33 kB
---
library_name: peft
base_model: NousResearch/CodeLlama-7b-hf-flash
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 83c2ff06-3778-41df-a6de-a8582abdaca3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-7b-hf-flash
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6700e7210e3f6191_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6700e7210e3f6191_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: dimasik1987/83c2ff06-3778-41df-a6de-a8582abdaca3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/6700e7210e3f6191_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 2028
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_dtype: bfloat16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 83c2ff06-3778-41df-a6de-a8582abdaca3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 83c2ff06-3778-41df-a6de-a8582abdaca3
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
```
</details><br>
# 83c2ff06-3778-41df-a6de-a8582abdaca3
This model is a fine-tuned version of [NousResearch/CodeLlama-7b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-7b-hf-flash) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7738
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 5.8203 | 0.0003 | 1 | 1.4616 |
| 5.7421 | 0.0017 | 5 | 1.4401 |
| 4.9761 | 0.0033 | 10 | 1.2095 |
| 4.6298 | 0.0050 | 15 | 0.9935 |
| 3.6041 | 0.0066 | 20 | 0.8895 |
| 3.4775 | 0.0083 | 25 | 0.8444 |
| 2.8792 | 0.0099 | 30 | 0.8117 |
| 3.3873 | 0.0116 | 35 | 0.7912 |
| 3.1162 | 0.0132 | 40 | 0.7798 |
| 3.3973 | 0.0149 | 45 | 0.7749 |
| 2.9933 | 0.0165 | 50 | 0.7738 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1