|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bart-base-asqa-ob |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-asqa-ob |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8291 |
|
- Rougelsum: 13.0645 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:| |
|
| No log | 1.0 | 355 | 1.9076 | 13.1069 | |
|
| 2.2336 | 2.0 | 710 | 1.8749 | 13.0551 | |
|
| 2.048 | 3.0 | 1065 | 1.8580 | 13.1287 | |
|
| 2.048 | 4.0 | 1420 | 1.8413 | 13.1473 | |
|
| 2.0003 | 5.0 | 1775 | 1.8451 | 13.1264 | |
|
| 1.9423 | 6.0 | 2130 | 1.8360 | 13.0959 | |
|
| 1.9423 | 7.0 | 2485 | 1.8372 | 13.1289 | |
|
| 1.8894 | 8.0 | 2840 | 1.8275 | 13.1359 | |
|
| 1.8568 | 9.0 | 3195 | 1.8241 | 13.0983 | |
|
| 1.8279 | 10.0 | 3550 | 1.8279 | 13.0184 | |
|
| 1.8279 | 11.0 | 3905 | 1.8275 | 13.1177 | |
|
| 1.7871 | 12.0 | 4260 | 1.8279 | 13.0871 | |
|
| 1.7666 | 13.0 | 4615 | 1.8295 | 13.0992 | |
|
| 1.7666 | 14.0 | 4970 | 1.8291 | 13.0645 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.0.dev0 |
|
- Pytorch 1.12.1+cu102 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|