diogopaes10's picture
update model card README.md
77818de
metadata
license: mit
base_model: microsoft/MiniLM-L12-H384-uncased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
  - precision
  - recall
model-index:
  - name: 016-microsoft-MiniLM-finetuned-yahoo-80_20
    results: []

016-microsoft-MiniLM-finetuned-yahoo-80_20

This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6861
  • F1: 0.4657
  • Accuracy: 0.5
  • Precision: 0.5267
  • Recall: 0.5
  • System Ram Used: 3.8760
  • System Ram Total: 83.4807
  • Gpu Ram Allocated: 0.3991
  • Gpu Ram Cached: 1.9316
  • Gpu Ram Total: 39.5640
  • Gpu Utilization: 35
  • Disk Space Used: 24.5397
  • Disk Space Total: 78.1898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy Precision Recall System Ram Used System Ram Total Gpu Ram Allocated Gpu Ram Cached Gpu Ram Total Gpu Utilization Disk Space Used Disk Space Total
2.3016 5.0 15 2.3016 0.0182 0.1 0.01 0.1 3.8589 83.4807 0.3990 1.9219 39.5640 38 24.5396 78.1898
2.2944 10.0 30 2.2979 0.0182 0.1 0.01 0.1 3.8753 83.4807 0.3991 1.9219 39.5640 36 24.5396 78.1898
2.2693 15.0 45 2.2696 0.2030 0.25 0.2472 0.25 3.8814 83.4807 0.3990 1.9316 39.5640 35 24.5396 78.1898
2.1627 20.0 60 2.2004 0.1808 0.25 0.1932 0.25 3.8785 83.4807 0.3990 1.9316 39.5640 39 24.5396 78.1898
1.9951 25.0 75 2.0773 0.2649 0.35 0.2922 0.35 3.8796 83.4807 0.3990 1.9316 39.5640 38 24.5396 78.1898
1.8128 30.0 90 1.9729 0.3619 0.45 0.3533 0.45 3.8802 83.4807 0.3990 1.9316 39.5640 36 24.5396 78.1898
1.6805 35.0 105 1.9061 0.4405 0.5 0.465 0.5 3.8803 83.4807 0.3990 1.9316 39.5640 37 24.5396 78.1898
1.5773 40.0 120 1.8512 0.3824 0.45 0.3767 0.45 3.8846 83.4807 0.3990 1.9316 39.5640 38 24.5396 78.1898
1.4916 45.0 135 1.8222 0.5190 0.55 0.5600 0.55 3.8846 83.4807 0.3991 1.9316 39.5640 40 24.5397 78.1898
1.4142 50.0 150 1.8056 0.4657 0.5 0.5267 0.5 3.8850 83.4807 0.3990 1.9316 39.5640 38 24.5397 78.1898
1.3555 55.0 165 1.7700 0.4657 0.5 0.5267 0.5 3.8850 83.4807 0.3991 1.9316 39.5640 41 24.5397 78.1898
1.3029 60.0 180 1.7568 0.4657 0.5 0.5267 0.5 3.8795 83.4807 0.3991 1.9316 39.5640 35 24.5397 78.1898
1.2572 65.0 195 1.7462 0.4371 0.45 0.5067 0.45 3.8802 83.4807 0.3991 1.9316 39.5640 40 24.5397 78.1898
1.2207 70.0 210 1.7215 0.4371 0.45 0.5067 0.45 3.8880 83.4807 0.3990 1.9316 39.5640 37 24.5397 78.1898
1.1915 75.0 225 1.7103 0.4657 0.5 0.5267 0.5 3.8760 83.4807 0.3991 1.9316 39.5640 39 24.5397 78.1898
1.1649 80.0 240 1.7069 0.4371 0.45 0.5067 0.45 3.8761 83.4807 0.3990 1.9316 39.5640 40 24.5397 78.1898
1.1484 85.0 255 1.6911 0.4657 0.5 0.5267 0.5 3.8747 83.4807 0.3991 1.9316 39.5640 35 24.5397 78.1898
1.135 90.0 270 1.6888 0.4657 0.5 0.5267 0.5 3.8753 83.4807 0.3990 1.9316 39.5640 37 24.5397 78.1898
1.1226 95.0 285 1.6860 0.4657 0.5 0.5267 0.5 3.8755 83.4807 0.3990 1.9316 39.5640 39 24.5397 78.1898
1.1217 100.0 300 1.6861 0.4657 0.5 0.5267 0.5 3.8755 83.4807 0.3990 1.9316 39.5640 38 24.5397 78.1898

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3