File size: 36,095 Bytes
ea94001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
---
base_model: FacebookAI/xlm-roberta-large
datasets:
- sentence-transformers/stsb
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:MatryoshkaLoss
- loss:CoSENTLoss
widget:
- source_sentence: A chef is preparing some food.
  sentences:
  - Five birds stand on the snow.
  - A chef prepared a meal.
  - There is no 'still' that is not relative to some other object.
- source_sentence: A woman is adding oil on fishes.
  sentences:
  - Large cruise ship floating on the water.
  - It refers to the maximum f-stop (which is defined as the ratio of focal length
    to effective aperture diameter).
  - The woman is cutting potatoes.
- source_sentence: The player shoots the winning points.
  sentences:
  - Minimum wage laws hurt the least skilled, least productive the most.
  - The basketball player is about to score points for his team.
  - Three televisions, on on the floor, the other two on a box.
- source_sentence: Stars form in star-formation regions, which itself develop from
    molecular clouds.
  sentences:
  - Although I believe Searle is mistaken, I don't think you have found the problem.
  - It may be possible for a solar system like ours to exist outside of a galaxy.
  - A blond-haired child performing on the trumpet in front of a house while his younger
    brother watches.
- source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
    consort, the King has always been the sovereign.
  sentences:
  - At first, I thought this is a bit of a tricky question.
  - A man plays the guitar.
  - There is a very good reason not to refer to the Queen's spouse as "King" - because
    they aren't the King.
model-index:
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 768
      type: sts-dev-768
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.038123417655342585
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: -0.030855987437062582
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.0742298464837288
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: -0.016119009479880368
      name: Spearman Euclidean
    - type: pearson_dot
      value: -0.053239384921975864
      name: Pearson Dot
    - type: spearman_dot
      value: -0.03860610142560432
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.040766255073950965
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: -0.028106086435826655
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.076050553000047
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: -0.014573222092867504
      name: Spearman Euclidean
    - type: pearson_dot
      value: -0.06110575151055097
      name: Pearson Dot
    - type: spearman_dot
      value: -0.04818501881621991
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.044210895435818166
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: -0.03253407490039325
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.0529355152933442
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: -0.0338167301189937
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.0887169006335579
      name: Pearson Dot
    - type: spearman_dot
      value: 0.06886250477710897
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 128
      type: sts-dev-128
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.05321620243744594
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: -0.026531903856252148
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.06064347235216407
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: -0.0270947004666721
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.07199088437564892
      name: Pearson Dot
    - type: spearman_dot
      value: 0.05552894816506978
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 64
      type: sts-dev-64
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.046922199302745354
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: -0.027530540631984835
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.04930495975336398
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: -0.02287953412697089
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.05851507366090909
      name: Pearson Dot
    - type: spearman_dot
      value: 0.044913605667507114
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.0005203243269627229
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.007914891421418472
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.008479099839233263
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.0002449834909380018
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.015253799995136243
      name: Pearson Dot
    - type: spearman_dot
      value: -0.002544651953260673
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.000985791968546407
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.009210170664121263
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.010968197464829785
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.0006366521814203481
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.030903954394043587
      name: Pearson Dot
    - type: spearman_dot
      value: 0.0214169911509498
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.008347426706014351
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.008133437696668973
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.01284332508912676
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.006207692348050752
      name: Spearman Euclidean
    - type: pearson_dot
      value: -0.10411841010392278
      name: Pearson Dot
    - type: spearman_dot
      value: -0.10441611480429308
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.007293947286825709
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.012461130559236479
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.013785631605643068
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.008355374230034162
      name: Spearman Euclidean
    - type: pearson_dot
      value: -0.07790382803601184
      name: Pearson Dot
    - type: spearman_dot
      value: -0.08277939304968172
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: .nan
      name: Pearson Cosine
    - type: spearman_cosine
      value: .nan
      name: Spearman Cosine
    - type: pearson_manhattan
      value: -0.012731573411777072
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.003453137865023755
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: -0.013710254571378023
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.0028389826642085166
      name: Spearman Euclidean
    - type: pearson_dot
      value: -0.04900795414419644
      name: Pearson Dot
    - type: spearman_dot
      value: -0.05520642056907742
      name: Spearman Dot
    - type: pearson_max
      value: .nan
      name: Pearson Max
    - type: spearman_max
      value: .nan
      name: Spearman Max
---

# SentenceTransformer based on FacebookAI/xlm-roberta-large

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dipteshkanojia/xlm-roberta-large-sts-matryoshka")
# Run inference
sentences = [
    'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
    'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
    'A man plays the guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | -0.0381 |
| spearman_manhattan  | -0.0309 |
| pearson_euclidean   | -0.0742 |
| spearman_euclidean  | -0.0161 |
| pearson_dot         | -0.0532 |
| spearman_dot        | -0.0386 |
| pearson_max         | nan     |
| spearman_max        | nan     |

#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | -0.0408 |
| spearman_manhattan  | -0.0281 |
| pearson_euclidean   | -0.0761 |
| spearman_euclidean  | -0.0146 |
| pearson_dot         | -0.0611 |
| spearman_dot        | -0.0482 |
| pearson_max         | nan     |
| spearman_max        | nan     |

#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | -0.0442 |
| spearman_manhattan  | -0.0325 |
| pearson_euclidean   | -0.0529 |
| spearman_euclidean  | -0.0338 |
| pearson_dot         | 0.0887  |
| spearman_dot        | 0.0689  |
| pearson_max         | nan     |
| spearman_max        | nan     |

#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | -0.0532 |
| spearman_manhattan  | -0.0265 |
| pearson_euclidean   | -0.0606 |
| spearman_euclidean  | -0.0271 |
| pearson_dot         | 0.072   |
| spearman_dot        | 0.0555  |
| pearson_max         | nan     |
| spearman_max        | nan     |

#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | -0.0469 |
| spearman_manhattan  | -0.0275 |
| pearson_euclidean   | -0.0493 |
| spearman_euclidean  | -0.0229 |
| pearson_dot         | 0.0585  |
| spearman_dot        | 0.0449  |
| pearson_max         | nan     |
| spearman_max        | nan     |

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | 0.0005  |
| spearman_manhattan  | 0.0079  |
| pearson_euclidean   | -0.0085 |
| spearman_euclidean  | 0.0002  |
| pearson_dot         | 0.0153  |
| spearman_dot        | -0.0025 |
| pearson_max         | nan     |
| spearman_max        | nan     |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | -0.001  |
| spearman_manhattan  | 0.0092  |
| pearson_euclidean   | -0.011  |
| spearman_euclidean  | 0.0006  |
| pearson_dot         | 0.0309  |
| spearman_dot        | 0.0214  |
| pearson_max         | nan     |
| spearman_max        | nan     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | -0.0083 |
| spearman_manhattan  | 0.0081  |
| pearson_euclidean   | -0.0128 |
| spearman_euclidean  | 0.0062  |
| pearson_dot         | -0.1041 |
| spearman_dot        | -0.1044 |
| pearson_max         | nan     |
| spearman_max        | nan     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | -0.0073 |
| spearman_manhattan  | 0.0125  |
| pearson_euclidean   | -0.0138 |
| spearman_euclidean  | 0.0084  |
| pearson_dot         | -0.0779 |
| spearman_dot        | -0.0828 |
| pearson_max         | nan     |
| spearman_max        | nan     |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value   |
|:--------------------|:--------|
| pearson_cosine      | nan     |
| **spearman_cosine** | **nan** |
| pearson_manhattan   | -0.0127 |
| spearman_manhattan  | 0.0035  |
| pearson_euclidean   | -0.0137 |
| spearman_euclidean  | 0.0028  |
| pearson_dot         | -0.049  |
| spearman_dot        | -0.0552 |
| pearson_max         | nan     |
| spearman_max        | nan     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/stsb

* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 11.08 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 11.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                             | score             |
  |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
  | <code>A plane is taking off.</code>                        | <code>An air plane is taking off.</code>                              | <code>1.0</code>  |
  | <code>A man is playing a large flute.</code>               | <code>A man is playing a flute.</code>                                | <code>0.76</code> |
  | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### sentence-transformers/stsb

* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                        | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 16.55 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.5 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                         | sentence2                                             | score             |
  |:--------------------------------------------------|:------------------------------------------------------|:------------------|
  | <code>A man with a hard hat is dancing.</code>    | <code>A man wearing a hard hat is dancing.</code>     | <code>1.0</code>  |
  | <code>A young child is riding a horse.</code>     | <code>A child is riding a horse.</code>               | <code>0.95</code> |
  | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code>  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 6
- `per_device_eval_batch_size`: 6
- `num_train_epochs`: 8
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 6
- `per_device_eval_batch_size`: 6
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss    | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 1.0417 | 500  | 21.1353       | 20.8565 | nan                         | nan                         | nan                         | nan                        | nan                         | -                            | -                            | -                            | -                           | -                            |
| 2.0833 | 1000 | 20.7941       | 20.8565 | nan                         | nan                         | nan                         | nan                        | nan                         | -                            | -                            | -                            | -                           | -                            |
| 3.125  | 1500 | 20.7823       | 20.8565 | nan                         | nan                         | nan                         | nan                        | nan                         | -                            | -                            | -                            | -                           | -                            |
| 4.1667 | 2000 | 20.781        | 20.8565 | nan                         | nan                         | nan                         | nan                        | nan                         | -                            | -                            | -                            | -                           | -                            |
| 5.2083 | 2500 | 20.7707       | 20.8565 | nan                         | nan                         | nan                         | nan                        | nan                         | -                            | -                            | -                            | -                           | -                            |
| 6.25   | 3000 | 20.7661       | 20.8565 | nan                         | nan                         | nan                         | nan                        | nan                         | -                            | -                            | -                            | -                           | -                            |
| 7.2917 | 3500 | 20.7719       | 20.8565 | nan                         | nan                         | nan                         | nan                        | nan                         | -                            | -                            | -                            | -                           | -                            |
| 8.0    | 3840 | -             | -       | -                           | -                           | -                           | -                          | -                           | nan                          | nan                          | nan                          | nan                         | nan                          |


### Framework Versions
- Python: 3.9.19
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->