alecocc's picture
Update README.md
7460b83 verified
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: disi-unibo-nlp
results: []
datasets:
- disi-unibo-nlp/foodex2-clean
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa FoodEx2 Coder
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the **train_task1** split of the dataset [foodex2-clean]().
It achieves the following results on the evaluation set:
- Loss: 0.0548
- Accuracy: 0.9822
- F1: 0.8507
- Precision: 0.9301
- Recall: 0.7838
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.124 | 0.2899 | 1000 | 0.1032 | 0.9671 | 0.7090 | 0.8324 | 0.6174 |
| 0.1004 | 0.5799 | 2000 | 0.0855 | 0.9721 | 0.7551 | 0.8769 | 0.6631 |
| 0.0858 | 0.8698 | 3000 | 0.0737 | 0.9757 | 0.7873 | 0.9102 | 0.6937 |
| 0.0736 | 1.1598 | 4000 | 0.0696 | 0.9786 | 0.8196 | 0.9031 | 0.7502 |
| 0.0696 | 1.4497 | 5000 | 0.0639 | 0.9795 | 0.8294 | 0.8996 | 0.7694 |
| 0.068 | 1.7396 | 6000 | 0.0606 | 0.9812 | 0.8401 | 0.9385 | 0.7604 |
| 0.0634 | 2.0296 | 7000 | 0.0593 | 0.9809 | 0.8414 | 0.9123 | 0.7808 |
| 0.0565 | 2.3195 | 8000 | 0.0568 | 0.9820 | 0.8485 | 0.9318 | 0.7790 |
| 0.0584 | 2.6095 | 9000 | 0.0553 | 0.9822 | 0.8512 | 0.9296 | 0.7850 |
| 0.0568 | 2.8994 | 10000 | 0.0548 | 0.9822 | 0.8507 | 0.9301 | 0.7838 |
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0