sql-code-llama / README.md
diwakar21scout's picture
diwakar21scout/llama-pls/sql-pyspark_v0
b216caa
|
raw
history blame
2.41 kB
---
license: llama2
base_model: codellama/CodeLlama-7b-hf
tags:
- generated_from_trainer
model-index:
- name: sql-code-llama
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sql-code-llama
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0810
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 400
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.033 | 0.28 | 20 | 1.9418 |
| 1.3136 | 0.56 | 40 | 0.8477 |
| 0.1674 | 0.83 | 60 | 0.1384 |
| 0.1276 | 1.11 | 80 | 0.1220 |
| 0.1106 | 1.39 | 100 | 0.1046 |
| 0.102 | 1.67 | 120 | 0.0946 |
| 0.0917 | 1.94 | 140 | 0.0903 |
| 0.0895 | 2.22 | 160 | 0.0887 |
| 0.0889 | 2.5 | 180 | 0.0872 |
| 0.0874 | 2.78 | 200 | 0.0858 |
| 0.086 | 3.06 | 220 | 0.0851 |
| 0.0861 | 3.33 | 240 | 0.0842 |
| 0.085 | 3.61 | 260 | 0.0835 |
| 0.0821 | 3.89 | 280 | 0.0830 |
| 0.0838 | 4.17 | 300 | 0.0823 |
| 0.0816 | 4.44 | 320 | 0.0820 |
| 0.0785 | 4.72 | 340 | 0.0815 |
| 0.0819 | 5.0 | 360 | 0.0812 |
| 0.081 | 5.28 | 380 | 0.0810 |
| 0.0765 | 5.56 | 400 | 0.0810 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.15.0