|
--- |
|
license: llama2 |
|
base_model: codellama/CodeLlama-7b-hf |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: sql-code-llama |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sql-code-llama |
|
|
|
This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0810 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 400 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 2.033 | 0.28 | 20 | 1.9418 | |
|
| 1.3136 | 0.56 | 40 | 0.8477 | |
|
| 0.1674 | 0.83 | 60 | 0.1384 | |
|
| 0.1276 | 1.11 | 80 | 0.1220 | |
|
| 0.1106 | 1.39 | 100 | 0.1046 | |
|
| 0.102 | 1.67 | 120 | 0.0946 | |
|
| 0.0917 | 1.94 | 140 | 0.0903 | |
|
| 0.0895 | 2.22 | 160 | 0.0887 | |
|
| 0.0889 | 2.5 | 180 | 0.0872 | |
|
| 0.0874 | 2.78 | 200 | 0.0858 | |
|
| 0.086 | 3.06 | 220 | 0.0851 | |
|
| 0.0861 | 3.33 | 240 | 0.0842 | |
|
| 0.085 | 3.61 | 260 | 0.0835 | |
|
| 0.0821 | 3.89 | 280 | 0.0830 | |
|
| 0.0838 | 4.17 | 300 | 0.0823 | |
|
| 0.0816 | 4.44 | 320 | 0.0820 | |
|
| 0.0785 | 4.72 | 340 | 0.0815 | |
|
| 0.0819 | 5.0 | 360 | 0.0812 | |
|
| 0.081 | 5.28 | 380 | 0.0810 | |
|
| 0.0765 | 5.56 | 400 | 0.0810 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.15.0 |
|
|