|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
|
|
--- |
|
|
|
# diwank/dfe-large-en-2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('diwank/dfe-large-en-2') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Evaluation Results |
|
|
|
<!--- Describe how your model was evaluated --> |
|
|
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=diwank/dfe-large-en-2) |
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 3633 with parameters: |
|
``` |
|
{'batch_size': 1024, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 4, |
|
"evaluation_steps": 2000, |
|
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'lion_pytorch.lion_pytorch.Lion'>", |
|
"optimizer_params": { |
|
"lr": 0.0001, |
|
"weight_decay": 0.01 |
|
}, |
|
"scheduler": "WarmupCosine", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 100, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
(2): Asym( |
|
(dialog-0): Dense({'in_features': 1024, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(dialog-1): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(dialog-2): Dropout( |
|
(dropout_layer): Dropout(p=0.1, inplace=False) |
|
) |
|
(dialog-3): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(dialog-4): Dense({'in_features': 2048, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(dialog-5): Normalize() |
|
(fact-0): Dense({'in_features': 1024, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(fact-1): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(fact-2): Dropout( |
|
(dropout_layer): Dropout(p=0.1, inplace=False) |
|
) |
|
(fact-3): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(fact-4): Dense({'in_features': 2048, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) |
|
(fact-5): Normalize() |
|
) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |