dfe-large-en-2 / README.md
diwank's picture
Add new SentenceTransformer model.
880f0cf
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# diwank/dfe-large-en-2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('diwank/dfe-large-en-2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=diwank/dfe-large-en-2)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 3633 with parameters:
```
{'batch_size': 1024, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 2000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'lion_pytorch.lion_pytorch.Lion'>",
"optimizer_params": {
"lr": 0.0001,
"weight_decay": 0.01
},
"scheduler": "WarmupCosine",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Asym(
(dialog-0): Dense({'in_features': 1024, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-1): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-2): Dropout(
(dropout_layer): Dropout(p=0.1, inplace=False)
)
(dialog-3): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-4): Dense({'in_features': 2048, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(dialog-5): Normalize()
(fact-0): Dense({'in_features': 1024, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-1): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-2): Dropout(
(dropout_layer): Dropout(p=0.1, inplace=False)
)
(fact-3): Dense({'in_features': 2048, 'out_features': 2048, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-4): Dense({'in_features': 2048, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(fact-5): Normalize()
)
)
```
## Citing & Authors
<!--- Describe where people can find more information -->