See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: tiiuae/falcon-rw-1b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 8fa13833eeee37db_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/8fa13833eeee37db_train_data.json
type:
field_input: prompt
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: dixedus/0514befb-d8f7-4efc-832f-53cc42ad74a0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/8fa13833eeee37db_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: da803c86-6313-44dd-8e9b-70e6c12f6507
wandb_project: Gradients-On-Eight
wandb_run: your_name
wandb_runid: da803c86-6313-44dd-8e9b-70e6c12f6507
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
0514befb-d8f7-4efc-832f-53cc42ad74a0
This model is a fine-tuned version of tiiuae/falcon-rw-1b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 178
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0169 | 1 | 3.1055 |
5.4608 | 0.2532 | 15 | 1.2343 |
3.5696 | 0.5063 | 30 | 0.9196 |
3.2321 | 0.7595 | 45 | 0.8254 |
2.8758 | 1.0127 | 60 | 0.7856 |
2.6508 | 1.2658 | 75 | 0.7534 |
2.7023 | 1.5190 | 90 | 0.7283 |
2.6578 | 1.7722 | 105 | 0.7149 |
2.3844 | 2.0253 | 120 | 0.7099 |
2.1785 | 2.2785 | 135 | 0.7047 |
2.2772 | 2.5316 | 150 | 0.7003 |
2.4588 | 2.7848 | 165 | 0.6992 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for dixedus/0514befb-d8f7-4efc-832f-53cc42ad74a0
Base model
tiiuae/falcon-rw-1b