See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloomz-560m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e687fa7239c356e0_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e687fa7239c356e0_train_data.json
type:
field_instruction: idiom
field_output: sentence
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: dixedus/7fcb8f77-9cc7-4e8b-9235-3bf3bce5b36a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/e687fa7239c356e0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: e42c7ecb-dcd5-460a-9fc7-f330132639a5
wandb_project: Gradients-On-Eight
wandb_run: your_name
wandb_runid: e42c7ecb-dcd5-460a-9fc7-f330132639a5
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
7fcb8f77-9cc7-4e8b-9235-3bf3bce5b36a
This model is a fine-tuned version of bigscience/bloomz-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.8318
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0008 | 1 | 4.6736 |
16.9645 | 0.0129 | 17 | 4.1457 |
15.5833 | 0.0259 | 34 | 3.9829 |
15.9057 | 0.0388 | 51 | 3.9259 |
15.7934 | 0.0518 | 68 | 3.8892 |
16.0657 | 0.0647 | 85 | 3.8695 |
15.3697 | 0.0776 | 102 | 3.8520 |
14.9989 | 0.0906 | 119 | 3.8460 |
15.2332 | 0.1035 | 136 | 3.8393 |
15.1373 | 0.1165 | 153 | 3.8331 |
14.9591 | 0.1294 | 170 | 3.8313 |
15.3457 | 0.1423 | 187 | 3.8318 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for dixedus/7fcb8f77-9cc7-4e8b-9235-3bf3bce5b36a
Base model
bigscience/bloomz-560m