swin-base-patch4-window7-224-in22k-MM_Classification_base_web_images

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3017
  • Accuracy: 0.8838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.517 0.9927 68 0.4430 0.8157
0.4211 2.0 137 0.3800 0.8457
0.3532 2.9927 205 0.3563 0.8616
0.3365 4.0 274 0.3333 0.8700
0.2976 4.9927 342 0.3017 0.8838
0.2611 6.0 411 0.3119 0.8810
0.255 6.9489 476 0.3085 0.8820

Framework versions

  • Transformers 4.44.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
86.8M params
Tensor type
I64
·
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for djbp/swin-base-patch4-window7-224-in22k-MM_Classification_base_web_images

Finetuned
(22)
this model

Evaluation results