MN-Chinofun-12B-2 / README.md
djuna's picture
Adding Evaluation Results (#2)
df86227 verified
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- grimjim/magnum-consolidatum-v1-12b
- spow12/ChatWaifu_v1.4
- GalrionSoftworks/Canidori-12B-v1
- Nohobby/MN-12B-Siskin-v0.2
- ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2
- RozGrov/NemoDori-v0.2.2-12B-MN-ties
model-index:
- name: MN-Chinofun-12B-2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 61.71
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun-12B-2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 29.53
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun-12B-2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.18
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun-12B-2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.38
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun-12B-2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.35
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun-12B-2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 29.06
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun-12B-2
name: Open LLM Leaderboard
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2](https://huggingface.co/ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2) as a base.
### Models Merged
The following models were included in the merge:
* [grimjim/magnum-consolidatum-v1-12b](https://huggingface.co/grimjim/magnum-consolidatum-v1-12b)
* [spow12/ChatWaifu_v1.4](https://huggingface.co/spow12/ChatWaifu_v1.4)
* [GalrionSoftworks/Canidori-12B-v1](https://huggingface.co/GalrionSoftworks/Canidori-12B-v1)
* [Nohobby/MN-12B-Siskin-v0.2](https://huggingface.co/Nohobby/MN-12B-Siskin-v0.2)
* [RozGrov/NemoDori-v0.2.2-12B-MN-ties](https://huggingface.co/RozGrov/NemoDori-v0.2.2-12B-MN-ties)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: Nohobby/MN-12B-Siskin-v0.2
- model: spow12/ChatWaifu_v1.4
- model: grimjim/magnum-consolidatum-v1-12b
- model: RozGrov/NemoDori-v0.2.2-12B-MN-ties
- model: GalrionSoftworks/Canidori-12B-v1
merge_method: model_stock
base_model: ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.2
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_djuna__MN-Chinofun-12B-2)
| Metric |Value|
|-------------------|----:|
|Avg. |25.37|
|IFEval (0-Shot) |61.71|
|BBH (3-Shot) |29.53|
|MATH Lvl 5 (4-Shot)|11.18|
|GPQA (0-shot) | 7.38|
|MuSR (0-shot) |13.35|
|MMLU-PRO (5-shot) |29.06|