|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Utility functions to load from the checkpoints. |
|
Each checkpoint is a torch.saved dict with the following keys: |
|
- 'xp.cfg': the hydra config as dumped during training. This should be used |
|
to rebuild the object using the audiocraft.models.builders functions, |
|
- 'model_best_state': a readily loadable best state for the model, including |
|
the conditioner. The model obtained from `xp.cfg` should be compatible |
|
with this state dict. In the case of a LM, the encodec model would not be |
|
bundled along but instead provided separately. |
|
|
|
Those functions also support loading from a remote location with the Torch Hub API. |
|
They also support overriding some parameters, in particular the device and dtype |
|
of the returned model. |
|
""" |
|
|
|
from pathlib import Path |
|
from huggingface_hub import hf_hub_download |
|
import typing as tp |
|
import os |
|
|
|
from omegaconf import OmegaConf, DictConfig |
|
import torch |
|
|
|
import audiocraft |
|
from . import builders |
|
from .encodec import CompressionModel |
|
|
|
|
|
def get_audiocraft_cache_dir() -> tp.Optional[str]: |
|
return os.environ.get('AUDIOCRAFT_CACHE_DIR', None) |
|
|
|
|
|
def _get_state_dict( |
|
file_or_url_or_id: tp.Union[Path, str], |
|
filename: tp.Optional[str] = None, |
|
device='cpu', |
|
cache_dir: tp.Optional[str] = None, |
|
): |
|
if cache_dir is None: |
|
cache_dir = get_audiocraft_cache_dir() |
|
|
|
file_or_url_or_id = str(file_or_url_or_id) |
|
assert isinstance(file_or_url_or_id, str) |
|
|
|
if os.path.isfile(file_or_url_or_id): |
|
return torch.load(file_or_url_or_id, map_location=device) |
|
|
|
if os.path.isdir(file_or_url_or_id): |
|
file = f"{file_or_url_or_id}/{filename}" |
|
return torch.load(file, map_location=device) |
|
|
|
elif file_or_url_or_id.startswith('https://'): |
|
return torch.hub.load_state_dict_from_url(file_or_url_or_id, map_location=device, check_hash=True) |
|
|
|
else: |
|
assert filename is not None, "filename needs to be defined if using HF checkpoints" |
|
|
|
file = hf_hub_download( |
|
repo_id=file_or_url_or_id, filename=filename, cache_dir=cache_dir, |
|
library_name="audiocraft", |
|
library_version= '1.3.0a1') |
|
return torch.load(file, map_location=device) |
|
|
|
|
|
def load_compression_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None): |
|
return _get_state_dict(file_or_url_or_id, filename="compression_state_dict.bin", cache_dir=cache_dir) |
|
|
|
|
|
def load_compression_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None): |
|
pkg = load_compression_model_ckpt(file_or_url_or_id, cache_dir=cache_dir) |
|
if 'pretrained' in pkg: |
|
return CompressionModel.get_pretrained(pkg['pretrained'], device=device) |
|
cfg = OmegaConf.create(pkg['xp.cfg']) |
|
cfg.device = str(device) |
|
model = builders.get_compression_model(cfg) |
|
model.load_state_dict(pkg['best_state'], strict=False) |
|
model.eval() |
|
return model |
|
|
|
|
|
def load_lm_model_ckpt(file_or_url_or_id: tp.Union[Path, str], cache_dir: tp.Optional[str] = None): |
|
return _get_state_dict(file_or_url_or_id, filename="state_dict.bin", cache_dir=cache_dir) |
|
|
|
|
|
def _delete_param(cfg: DictConfig, full_name: str): |
|
parts = full_name.split('.') |
|
for part in parts[:-1]: |
|
if part in cfg: |
|
cfg = cfg[part] |
|
else: |
|
return |
|
OmegaConf.set_struct(cfg, False) |
|
if parts[-1] in cfg: |
|
del cfg[parts[-1]] |
|
OmegaConf.set_struct(cfg, True) |
|
|
|
|
|
def load_lm_model(file_or_url_or_id: tp.Union[Path, str], device='cpu', cache_dir: tp.Optional[str] = None): |
|
pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir) |
|
cfg = OmegaConf.create(pkg['xp.cfg']) |
|
cfg.device = str(device) |
|
if cfg.device == 'cpu': |
|
cfg.dtype = 'float32' |
|
else: |
|
cfg.dtype = 'float16' |
|
_delete_param(cfg, 'conditioners.self_wav.chroma_stem.cache_path') |
|
_delete_param(cfg, 'conditioners.args.merge_text_conditions_p') |
|
_delete_param(cfg, 'conditioners.args.drop_desc_p') |
|
model = builders.get_lm_model(cfg) |
|
model.load_state_dict(pkg['best_state']) |
|
model.eval() |
|
model.cfg = cfg |
|
return model |
|
|
|
|
|
def load_lm_model_magnet(file_or_url_or_id: tp.Union[Path, str], compression_model_frame_rate: int, |
|
device='cpu', cache_dir: tp.Optional[str] = None): |
|
pkg = load_lm_model_ckpt(file_or_url_or_id, cache_dir=cache_dir) |
|
cfg = OmegaConf.create(pkg['xp.cfg']) |
|
cfg.device = str(device) |
|
if cfg.device == 'cpu': |
|
cfg.dtype = 'float32' |
|
else: |
|
cfg.dtype = 'float16' |
|
_delete_param(cfg, 'conditioners.args.merge_text_conditions_p') |
|
_delete_param(cfg, 'conditioners.args.drop_desc_p') |
|
|
|
cfg.transformer_lm.compression_model_framerate = compression_model_frame_rate |
|
cfg.transformer_lm.segment_duration = cfg.dataset.segment_duration |
|
cfg.transformer_lm.span_len = cfg.masking.span_len |
|
|
|
|
|
from .transformer import set_efficient_attention_backend |
|
if cfg.transformer_lm.memory_efficient: |
|
set_efficient_attention_backend("xformers") |
|
|
|
model = builders.get_lm_model(cfg) |
|
model.load_state_dict(pkg['best_state']) |
|
model.eval() |
|
model.cfg = cfg |
|
return model |
|
|
|
|
|
def load_mbd_ckpt(file_or_url_or_id: tp.Union[Path, str], |
|
filename: tp.Optional[str] = None, |
|
cache_dir: tp.Optional[str] = None): |
|
return _get_state_dict(file_or_url_or_id, filename=filename, cache_dir=cache_dir) |
|
|
|
|
|
def load_diffusion_models(file_or_url_or_id: tp.Union[Path, str], |
|
device='cpu', |
|
filename: tp.Optional[str] = None, |
|
cache_dir: tp.Optional[str] = None): |
|
pkg = load_mbd_ckpt(file_or_url_or_id, filename=filename, cache_dir=cache_dir) |
|
models = [] |
|
processors = [] |
|
cfgs = [] |
|
sample_rate = pkg['sample_rate'] |
|
for i in range(pkg['n_bands']): |
|
cfg = pkg[i]['cfg'] |
|
model = builders.get_diffusion_model(cfg) |
|
model_dict = pkg[i]['model_state'] |
|
model.load_state_dict(model_dict) |
|
model.to(device) |
|
processor = builders.get_processor(cfg=cfg.processor, sample_rate=sample_rate) |
|
processor_dict = pkg[i]['processor_state'] |
|
processor.load_state_dict(processor_dict) |
|
processor.to(device) |
|
models.append(model) |
|
processors.append(processor) |
|
cfgs.append(cfg) |
|
return models, processors, cfgs |
|
|