rubert-electra-srl

This model is a fine-tuned version of ai-forever/ruElectra-medium on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0448
  • Addressee Precision: 0.9583
  • Addressee Recall: 1.0
  • Addressee F1: 0.9787
  • Addressee Number: 23
  • Benefactive Precision: 0.0
  • Benefactive Recall: 0.0
  • Benefactive F1: 0.0
  • Benefactive Number: 2
  • Causator Precision: 0.9773
  • Causator Recall: 0.9773
  • Causator F1: 0.9773
  • Causator Number: 44
  • Cause Precision: 0.9259
  • Cause Recall: 0.7143
  • Cause F1: 0.8065
  • Cause Number: 35
  • Contrsubject Precision: 1.0
  • Contrsubject Recall: 0.9429
  • Contrsubject F1: 0.9706
  • Contrsubject Number: 35
  • Deliberative Precision: 0.9231
  • Deliberative Recall: 1.0
  • Deliberative F1: 0.9600
  • Deliberative Number: 24
  • Destinative Precision: 1.0
  • Destinative Recall: 1.0
  • Destinative F1: 1.0
  • Destinative Number: 7
  • Directivefinal Precision: 1.0
  • Directivefinal Recall: 1.0
  • Directivefinal F1: 1.0
  • Directivefinal Number: 1
  • Experiencer Precision: 0.9030
  • Experiencer Recall: 0.9441
  • Experiencer F1: 0.9231
  • Experiencer Number: 286
  • Instrument Precision: 0.9
  • Instrument Recall: 0.9
  • Instrument F1: 0.9
  • Instrument Number: 10
  • Object Precision: 0.9484
  • Object Recall: 0.9519
  • Object F1: 0.9502
  • Object Number: 541
  • Overall Precision: 0.9369
  • Overall Recall: 0.9425
  • Overall F1: 0.9397
  • Overall Accuracy: 0.9883
  • Limitative F1: 0.0
  • Limitative Number: 0.0
  • Limitative Precision: 0.0
  • Limitative Recall: 0.0
  • Directiveinitial F1: 0.0
  • Directiveinitial Number: 0.0
  • Directiveinitial Precision: 0.0
  • Directiveinitial Recall: 0.0
  • Mediative F1: 0.0
  • Mediative Number: 0.0
  • Mediative Precision: 0.0
  • Mediative Recall: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00016666401556632117
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 708526
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.21
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Addressee Precision Addressee Recall Addressee F1 Addressee Number Benefactive Precision Benefactive Recall Benefactive F1 Benefactive Number Causator Precision Causator Recall Causator F1 Causator Number Cause Precision Cause Recall Cause F1 Cause Number Contrsubject Precision Contrsubject Recall Contrsubject F1 Contrsubject Number Deliberative Precision Deliberative Recall Deliberative F1 Deliberative Number Destinative Precision Destinative Recall Destinative F1 Destinative Number Directivefinal Precision Directivefinal Recall Directivefinal F1 Directivefinal Number Experiencer Precision Experiencer Recall Experiencer F1 Experiencer Number Instrument Precision Instrument Recall Instrument F1 Instrument Number Object Precision Object Recall Object F1 Object Number Overall Precision Overall Recall Overall F1 Overall Accuracy Limitative F1 Limitative Number Limitative Precision Limitative Recall Directiveinitial F1 Directiveinitial Number Directiveinitial Precision Directiveinitial Recall Mediative F1 Mediative Number Mediative Precision Mediative Recall
0.1548 1.0 1471 0.1755 0.6667 0.5217 0.5854 23 0.0 0.0 0.0 2 0.5714 0.8182 0.6729 44 0.5217 0.3429 0.4138 35 0.4103 0.4571 0.4324 35 0.0 0.0 0.0 24 0.0 0.0 0.0 7 0.0 0.0 0.0 1 0.8645 0.8252 0.8444 286 0.0 0.0 0.0 10 0.7711 0.8965 0.8291 541 0.7627 0.7907 0.7764 0.9582 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1209 2.0 2942 0.0797 0.9130 0.9130 0.9130 23 0.0 0.0 0.0 2 0.9348 0.9773 0.9556 44 0.8462 0.6286 0.7213 35 0.8889 0.9143 0.9014 35 0.75 0.875 0.8077 24 1.0 0.4286 0.6 7 0.0 0.0 0.0 1 0.8993 0.8741 0.8865 286 0.875 0.7 0.7778 10 0.9336 0.9094 0.9213 541 0.9138 0.8839 0.8986 0.9808 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0559 3.0 4413 0.0448 0.9583 1.0 0.9787 23 0.0 0.0 0.0 2 0.9773 0.9773 0.9773 44 0.9259 0.7143 0.8065 35 1.0 0.9429 0.9706 35 0.9231 1.0 0.9600 24 1.0 1.0 1.0 7 1.0 1.0 1.0 1 0.9030 0.9441 0.9231 286 0.9 0.9 0.9 10 0.9484 0.9519 0.9502 541 0.9369 0.9425 0.9397 0.9883 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
85M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dl-ru/rubert-electra-srl

Finetuned
(3)
this model