metadata
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: HuggingFaceTB/SmolLM-1.7B-Instruct
datasets:
- generator
model-index:
- name: SmolLM_1_7B_Instruct_qlora_nf4
results: []
SmolLM_1_7B_Instruct_qlora_nf4
This model is a fine-tuned version of HuggingFaceTB/SmolLM-1.7B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.6524
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0516 | 0.9756 | 10 | 1.8985 |
1.8456 | 1.9512 | 20 | 1.7876 |
1.7672 | 2.9268 | 30 | 1.7327 |
1.712 | 4.0 | 41 | 1.6967 |
1.6874 | 4.9756 | 51 | 1.6761 |
1.6643 | 5.9512 | 61 | 1.6636 |
1.6426 | 6.9268 | 71 | 1.6565 |
1.6388 | 8.0 | 82 | 1.6530 |
1.6387 | 8.9756 | 92 | 1.6524 |
1.6343 | 9.7561 | 100 | 1.6524 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.19.1