smolLM / README.md
dmariko's picture
HuggingFaceTB/SmolLM-360M-Instruct
ec56736 verified
|
raw
history blame
2.56 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: HuggingFaceTB/SmolLM-360M-Instruct
datasets:
  - generator
model-index:
  - name: smolLM
    results: []

smolLM

This model is a fine-tuned version of HuggingFaceTB/SmolLM-360M-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8124

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
2.3025 0.9524 10 2.1503
2.1107 2.0 21 2.0371
2.0147 2.9524 31 1.9717
1.9577 4.0 42 1.9244
1.9087 4.9524 52 1.8953
1.8825 6.0 63 1.8716
1.8667 6.9524 73 1.8558
1.8488 8.0 84 1.8429
1.8284 8.9524 94 1.8343
1.8201 10.0 105 1.8270
1.8129 10.9524 115 1.8219
1.8028 12.0 126 1.8179
1.7987 12.9524 136 1.8154
1.7938 14.0 147 1.8137
1.79 14.9524 157 1.8130
1.7903 16.0 168 1.8125
1.7884 16.9524 178 1.8125
1.7892 18.0 189 1.8124
1.7825 18.9524 199 1.8124
1.7906 19.0476 200 1.8124

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1