File size: 3,574 Bytes
e1078c1
f5265bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1078c1
 
f5265bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
datasets:
- common_voice_14_0
metrics:
- wer
model-index:
- name: XLS-R-SWAHILI-ASR-CV-14-1B
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_14_0
      type: common_voice_14_0
      config: sw
      split: test
      args: sw
    metrics:
    - name: Wer
      type: wer
      value: 0.2794303764906829
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# XLS-R-SWAHILI-ASR-CV-14-1B

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_14_0 dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.2794
- Cer: 0.0903

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Cer    | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:------:|:---------------:|:------:|
| 1.9691        | 0.33  | 400   | 0.2374 | inf             | 0.6776 |
| 0.5464        | 0.66  | 800   | 0.1758 | inf             | 0.5598 |
| 0.4909        | 1.0   | 1200  | 0.1680 | inf             | 0.5243 |
| 0.4263        | 1.33  | 1600  | 0.1502 | inf             | 0.4706 |
| 0.4047        | 1.66  | 2000  | 0.1580 | inf             | 0.4858 |
| 0.4054        | 1.99  | 2400  | 0.1426 | inf             | 0.4348 |
| 0.3542        | 2.32  | 2800  | 0.1340 | inf             | 0.4185 |
| 0.3525        | 2.66  | 3200  | 0.1400 | inf             | 0.4311 |
| 0.3359        | 2.99  | 3600  | 0.1308 | inf             | 0.4012 |
| 0.3006        | 3.32  | 4000  | 0.1278 | inf             | 0.3939 |
| 0.326         | 1.83  | 4400  | inf    | 0.4232          | 0.1362 |
| 0.326         | 1.99  | 4800  | inf    | 0.4136          | 0.1350 |
| 0.3034        | 2.16  | 5200  | inf    | 0.4282          | 0.1419 |
| 0.2925        | 2.32  | 5600  | inf    | 0.3901          | 0.1282 |
| 0.2822        | 2.49  | 6000  | inf    | 0.3876          | 0.1270 |
| 0.2659        | 2.66  | 6400  | inf    | 0.3586          | 0.1159 |
| 0.2582        | 2.82  | 6800  | inf    | 0.3536          | 0.1168 |
| 0.2414        | 2.99  | 7200  | inf    | 0.3327          | 0.1069 |
| 0.208         | 3.15  | 7600  | inf    | 0.3249          | 0.1053 |
| 0.1934        | 3.32  | 8000  | inf    | 0.3120          | 0.1015 |
| 0.1881        | 3.49  | 8400  | inf    | 0.3058          | 0.0993 |
| 0.1774        | 3.65  | 8800  | inf    | 0.2962          | 0.0959 |
| 0.1736        | 3.82  | 9200  | inf    | 0.2902          | 0.0935 |
| 0.1679        | 3.98  | 9600  | inf    | 0.2843          | 0.0917 |
| 0.1436        | 4.15  | 10000 | inf    | 0.2794          | 0.0903 |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.1
- Datasets 2.17.0
- Tokenizers 0.15.2