File size: 16,638 Bytes
ca90249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "b1b37ca8-25a3-440c-9b68-7f72ce670ade",
   "metadata": {},
   "source": [
    "# 2.4 基因大模型的生物序列特征提取"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d3d04215-2b6c-41fb-92a4-90c82d322ba4",
   "metadata": {},
   "source": [
    "使用 GPT-2 模型获取文本的特征向量是一个常见的需求,尤其是在进行文本分类、相似度计算或其他下游任务时。Hugging Face 的 transformers 库提供了简单易用的接口来实现这一点。以下是详细的步骤和代码示例,帮助你从 GPT-2 模型中提取文本的特征向量。"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ff5b7c6-e57c-4839-8510-f764154faa65",
   "metadata": {},
   "source": [
    "使用 GPT-2 模型获取文本的特征向量是一个常见的需求,尤其是在进行文本分类、相似度计算或其他下游任务时。Hugging Face 的 `transformers` 库提供了简单易用的接口来实现这一点。以下是详细的步骤和代码示例,帮助你从 GPT-2 模型中提取文本的特征向量。\n",
    "\n",
    "### 方法 1: 使用隐藏状态(Hidden States)\n",
    "\n",
    "GPT-2 是一个基于 Transformer 的语言模型,它在每一层都有隐藏状态(hidden states),这些隐藏状态可以作为文本的特征表示。你可以选择最后一层的隐藏状态作为最终的特征向量,或者对多层的隐藏状态进行平均或拼接。\n",
    "\n",
    "\n",
    "### 方法 2: 使用池化策略\n",
    "\n",
    "另一种方法是通过对所有 token 的隐藏状态进行池化操作来获得句子级别的特征向量。常见的池化方法包括:\n",
    "\n",
    "- **均值池化**(Mean Pooling):对所有 token 的隐藏状态求平均。\n",
    "- **最大池化**(Max Pooling):对每个维度取最大值。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "id": "e7fe053b-d6da-488a-9c62-24e4b40a992d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'input_ids': tensor([[    1,   191,    29,   753,  1241,  2104, 12297,   357,    85,  4395,\n",
      "         26392,    16]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
      "torch.Size([768])\n",
      "torch.Size([768])\n",
      "torch.Size([768])\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoTokenizer, AutoModel\n",
    "tokenizer = AutoTokenizer.from_pretrained('dna_bpe_dict')\n",
    "tokenizer.tokenize(\"GAGCACATTCGCCTGCGTGCGCACTCACACACACGTTCAAAAAGAGTCCATTCGATTCTGGCAGTAG\")\n",
    "#result: [G','AGCAC','ATTCGCC',....]\n",
    "\n",
    "model = AutoModel.from_pretrained('dna_gpt2_v0')\n",
    "import torch\n",
    "dna = \"ACGTAGCATCGGATCTATCTATCGACACTTGGTTATCGATCTACGAGCATCTCGTTAGC\"\n",
    "inputs = tokenizer(dna, return_tensors = 'pt')\n",
    "print(inputs)\n",
    "\n",
    "outputs = model(inputs[\"input_ids\"])\n",
    "#outputs = model(**inputs)\n",
    "\n",
    "hidden_states = outputs.last_hidden_state # [1, sequence_length, 768]  outputs.last_hidden_state or outputs[0]\n",
    "\n",
    "# embedding with mean pooling\n",
    "embedding_mean = torch.mean(hidden_states[0], dim=0)\n",
    "print(embedding_mean.shape) # expect to be 768\n",
    "\n",
    "# embedding with max pooling\n",
    "embedding_max = torch.max(hidden_states[0], dim=0)[0]\n",
    "print(embedding_max.shape) # expect to be 768\n",
    "\n",
    "# embedding with first token\n",
    "embedding_first_token = hidden_states[0][0]\n",
    "print(embedding_first_token.shape) # expect to be 768"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "id": "a1f2b545-283a-4613-a953-beb82f427826",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of BertModel were not initialized from the model checkpoint at dna_bert_v0 and are newly initialized: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'input_ids': tensor([[    6,   200, 16057,    10,  1256,  2123, 12294,   366, 13138,  7826,\n",
      "            82,    25]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}\n",
      "torch.Size([768])\n",
      "torch.Size([768])\n",
      "torch.Size([768])\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoTokenizer, AutoModel\n",
    "import torch\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained('dna_wordpiece_dict')\n",
    "tokenizer.tokenize(\"GAGCACATTCGCCTGCGTGCGCACTCACACACACGTTCAAAAAGAGTCCATTCGATTCTGGCAGTAG\")\n",
    "#result: [G','AGCAC','ATTCGCC',....]\n",
    "\n",
    "model = AutoModel.from_pretrained('dna_bert_v0')\n",
    "dna = \"ACGTAGCATCGGATCTATCTATCGACACTTGGTTATCGATCTACGAGCATCTCGTTAGC\"\n",
    "inputs = tokenizer(dna, return_tensors = 'pt')\n",
    "print(inputs)\n",
    "\n",
    "outputs = model(inputs[\"input_ids\"])\n",
    "#outputs = model(**inputs)\n",
    "\n",
    "hidden_states = outputs.last_hidden_state # [1, sequence_length, 768]  outputs.last_hidden_state or outputs[0]\n",
    "\n",
    "# embedding with mean pooling\n",
    "embedding_mean = torch.mean(hidden_states[0], dim=0)\n",
    "print(embedding_mean.shape) # expect to be 768\n",
    "\n",
    "# embedding with max pooling\n",
    "embedding_max = torch.max(hidden_states[0], dim=0)[0]\n",
    "print(embedding_max.shape) # expect to be 768\n",
    "\n",
    "# embedding with first token\n",
    "embedding_first_token = hidden_states[0][0]\n",
    "print(embedding_first_token.shape) # expect to be 768"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "56761874-9af7-4b90-aa8b-131e5b8c69b6",
   "metadata": {},
   "source": [
    "## 特征提取并分类\n",
    "\n",
    "我们使用第一章中的\"dnagpt/dna_core_promoter\"数据集,演示下使用我们训练的DNA GPT2或者DNA bert模型,提取序列特征,然使用最基础的逻辑回归分类方法,对序列进行分类。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "id": "f1ca177c-a80f-48a1-b2f9-16c13b3350db",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"\\nimport os\\n\\n# 设置环境变量, autodl专区 其他idc\\nos.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'\\n\\n# 打印环境变量以确认设置成功\\nprint(os.environ.get('HF_ENDPOINT'))\\n\""
      ]
     },
     "execution_count": 45,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import subprocess\n",
    "import os\n",
    "# 设置环境变量, autodl一般区域\n",
    "result = subprocess.run('bash -c \"source /etc/network_turbo && env | grep proxy\"', shell=True, capture_output=True, text=True)\n",
    "output = result.stdout\n",
    "for line in output.splitlines():\n",
    "    if '=' in line:\n",
    "        var, value = line.split('=', 1)\n",
    "        os.environ[var] = value\n",
    "\n",
    "#或者\n",
    "\"\"\"\n",
    "import os\n",
    "\n",
    "# 设置环境变量, autodl专区 其他idc\n",
    "os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'\n",
    "\n",
    "# 打印环境变量以确认设置成功\n",
    "print(os.environ.get('HF_ENDPOINT'))\n",
    "\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "id": "2295739c-e80a-47be-9400-88bfab4b0bb6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    train: Dataset({\n",
       "        features: ['sequence', 'label'],\n",
       "        num_rows: 59196\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "dna_data = load_dataset(\"dnagpt/dna_core_promoter\")\n",
    "dna_data"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c804bced-f151-43a7-8a95-156db358da3e",
   "metadata": {},
   "source": [
    "这里,我们不需要关注这个数据的具体生物学含义,只需知道sequence是具体的DNA序列,label是分类标签,有两个类别0和1即可"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "id": "9a47a1b1-21f2-4d71-801c-50f88e326ed3",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'sequence': 'CATGCGGGTCGATATCCTATCTGAATCTCTCAGCCCAAGAGGGAGTCCGCTCATCTATTCGGCAGTACTG',\n",
       " 'label': 0}"
      ]
     },
     "execution_count": 47,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dna_data[\"train\"][0]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cde7986d-a225-41ca-8f11-614d079fd2bf",
   "metadata": {},
   "source": [
    "这里使用scikit-learn库来构建逻辑回归分类器。首先是特征提取:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "id": "4010d991-056a-43ce-8cca-30eeec8678f5",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.datasets import load_iris\n",
    "from sklearn.metrics import accuracy_score\n",
    "\n",
    "\n",
    "def get_gpt2_feature(sequence):\n",
    "    return \n",
    "\n",
    "# 加载数据集\n",
    "data = load_iris()\n",
    "X = data.data[data.target < 2]  # 只选择前两个类别\n",
    "y = data.target[data.target < 2]\n",
    "\n",
    "X = []\n",
    "Y = []\n",
    "\n",
    "for item in dna_data[\"train\"]:\n",
    "    sequence = item[\"sequence\"]\n",
    "    label = item[\"label\"]\n",
    "    x_v = get_gpt2_feature(sequence)\n",
    "    y_v = label\n",
    "    X.append(x_v)\n",
    "    Y.append(y_v)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "id": "8af0effa-b2b6-4e49-9256-cead146d848c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[5.1, 3.5, 1.4, 0.2],\n",
       "       [4.9, 3. , 1.4, 0.2],\n",
       "       [4.7, 3.2, 1.3, 0.2],\n",
       "       [4.6, 3.1, 1.5, 0.2],\n",
       "       [5. , 3.6, 1.4, 0.2],\n",
       "       [5.4, 3.9, 1.7, 0.4],\n",
       "       [4.6, 3.4, 1.4, 0.3],\n",
       "       [5. , 3.4, 1.5, 0.2],\n",
       "       [4.4, 2.9, 1.4, 0.2],\n",
       "       [4.9, 3.1, 1.5, 0.1],\n",
       "       [5.4, 3.7, 1.5, 0.2],\n",
       "       [4.8, 3.4, 1.6, 0.2],\n",
       "       [4.8, 3. , 1.4, 0.1],\n",
       "       [4.3, 3. , 1.1, 0.1],\n",
       "       [5.8, 4. , 1.2, 0.2],\n",
       "       [5.7, 4.4, 1.5, 0.4],\n",
       "       [5.4, 3.9, 1.3, 0.4],\n",
       "       [5.1, 3.5, 1.4, 0.3],\n",
       "       [5.7, 3.8, 1.7, 0.3],\n",
       "       [5.1, 3.8, 1.5, 0.3],\n",
       "       [5.4, 3.4, 1.7, 0.2],\n",
       "       [5.1, 3.7, 1.5, 0.4],\n",
       "       [4.6, 3.6, 1. , 0.2],\n",
       "       [5.1, 3.3, 1.7, 0.5],\n",
       "       [4.8, 3.4, 1.9, 0.2],\n",
       "       [5. , 3. , 1.6, 0.2],\n",
       "       [5. , 3.4, 1.6, 0.4],\n",
       "       [5.2, 3.5, 1.5, 0.2],\n",
       "       [5.2, 3.4, 1.4, 0.2],\n",
       "       [4.7, 3.2, 1.6, 0.2],\n",
       "       [4.8, 3.1, 1.6, 0.2],\n",
       "       [5.4, 3.4, 1.5, 0.4],\n",
       "       [5.2, 4.1, 1.5, 0.1],\n",
       "       [5.5, 4.2, 1.4, 0.2],\n",
       "       [4.9, 3.1, 1.5, 0.2],\n",
       "       [5. , 3.2, 1.2, 0.2],\n",
       "       [5.5, 3.5, 1.3, 0.2],\n",
       "       [4.9, 3.6, 1.4, 0.1],\n",
       "       [4.4, 3. , 1.3, 0.2],\n",
       "       [5.1, 3.4, 1.5, 0.2],\n",
       "       [5. , 3.5, 1.3, 0.3],\n",
       "       [4.5, 2.3, 1.3, 0.3],\n",
       "       [4.4, 3.2, 1.3, 0.2],\n",
       "       [5. , 3.5, 1.6, 0.6],\n",
       "       [5.1, 3.8, 1.9, 0.4],\n",
       "       [4.8, 3. , 1.4, 0.3],\n",
       "       [5.1, 3.8, 1.6, 0.2],\n",
       "       [4.6, 3.2, 1.4, 0.2],\n",
       "       [5.3, 3.7, 1.5, 0.2],\n",
       "       [5. , 3.3, 1.4, 0.2],\n",
       "       [7. , 3.2, 4.7, 1.4],\n",
       "       [6.4, 3.2, 4.5, 1.5],\n",
       "       [6.9, 3.1, 4.9, 1.5],\n",
       "       [5.5, 2.3, 4. , 1.3],\n",
       "       [6.5, 2.8, 4.6, 1.5],\n",
       "       [5.7, 2.8, 4.5, 1.3],\n",
       "       [6.3, 3.3, 4.7, 1.6],\n",
       "       [4.9, 2.4, 3.3, 1. ],\n",
       "       [6.6, 2.9, 4.6, 1.3],\n",
       "       [5.2, 2.7, 3.9, 1.4],\n",
       "       [5. , 2. , 3.5, 1. ],\n",
       "       [5.9, 3. , 4.2, 1.5],\n",
       "       [6. , 2.2, 4. , 1. ],\n",
       "       [6.1, 2.9, 4.7, 1.4],\n",
       "       [5.6, 2.9, 3.6, 1.3],\n",
       "       [6.7, 3.1, 4.4, 1.4],\n",
       "       [5.6, 3. , 4.5, 1.5],\n",
       "       [5.8, 2.7, 4.1, 1. ],\n",
       "       [6.2, 2.2, 4.5, 1.5],\n",
       "       [5.6, 2.5, 3.9, 1.1],\n",
       "       [5.9, 3.2, 4.8, 1.8],\n",
       "       [6.1, 2.8, 4. , 1.3],\n",
       "       [6.3, 2.5, 4.9, 1.5],\n",
       "       [6.1, 2.8, 4.7, 1.2],\n",
       "       [6.4, 2.9, 4.3, 1.3],\n",
       "       [6.6, 3. , 4.4, 1.4],\n",
       "       [6.8, 2.8, 4.8, 1.4],\n",
       "       [6.7, 3. , 5. , 1.7],\n",
       "       [6. , 2.9, 4.5, 1.5],\n",
       "       [5.7, 2.6, 3.5, 1. ],\n",
       "       [5.5, 2.4, 3.8, 1.1],\n",
       "       [5.5, 2.4, 3.7, 1. ],\n",
       "       [5.8, 2.7, 3.9, 1.2],\n",
       "       [6. , 2.7, 5.1, 1.6],\n",
       "       [5.4, 3. , 4.5, 1.5],\n",
       "       [6. , 3.4, 4.5, 1.6],\n",
       "       [6.7, 3.1, 4.7, 1.5],\n",
       "       [6.3, 2.3, 4.4, 1.3],\n",
       "       [5.6, 3. , 4.1, 1.3],\n",
       "       [5.5, 2.5, 4. , 1.3],\n",
       "       [5.5, 2.6, 4.4, 1.2],\n",
       "       [6.1, 3. , 4.6, 1.4],\n",
       "       [5.8, 2.6, 4. , 1.2],\n",
       "       [5. , 2.3, 3.3, 1. ],\n",
       "       [5.6, 2.7, 4.2, 1.3],\n",
       "       [5.7, 3. , 4.2, 1.2],\n",
       "       [5.7, 2.9, 4.2, 1.3],\n",
       "       [6.2, 2.9, 4.3, 1.3],\n",
       "       [5.1, 2.5, 3. , 1.1],\n",
       "       [5.7, 2.8, 4.1, 1.3]])"
      ]
     },
     "execution_count": 49,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "id": "868a3cab-e991-4990-9ec5-3e632a41a599",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
       "       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
       "       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "y"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5ab0c188-6476-43c4-b361-a2bfe0ec7a8a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 将数据分为训练集和测试集\n",
    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
    "\n",
    "# 创建逻辑回归模型\n",
    "model = LogisticRegression()\n",
    "\n",
    "# 训练模型\n",
    "model.fit(X_train, y_train)\n",
    "\n",
    "# 在测试集上进行预测\n",
    "y_pred = model.predict(X_test)\n",
    "\n",
    "# 计算准确率\n",
    "accuracy = accuracy_score(y_test, y_pred)\n",
    "print(f\"Accuracy: {accuracy * 100:.2f}%\")\n",
    "\n",
    "# 输出部分预测结果与真实标签对比\n",
    "for i in range(5):\n",
    "    print(f\"True: {y_test[i]}, Predicted: {y_pred[i]}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}