File size: 7,753 Bytes
ca90249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
{
"cells": [
{
"cell_type": "markdown",
"id": "9131f25f-227b-4dbe-b28d-c5006df092c6",
"metadata": {},
"source": [
"# 2.5 基于多模态数据构建大模型"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a30b35c-1f5f-41e6-8fe1-5f522c700e9e",
"metadata": {},
"outputs": [],
"source": [
"from tokenizers import (\n",
" decoders,\n",
" models,\n",
" normalizers,\n",
" pre_tokenizers,\n",
" processors,\n",
" trainers,\n",
" Tokenizer,\n",
")\n",
"from transformers import AutoTokenizer"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "688fa3b1-f2ca-457a-abde-117c79b54fa9",
"metadata": {},
"outputs": [],
"source": [
"tokenizer = Tokenizer(models.BPE())\n",
"tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False, use_regex=False) #use_regex=False,空格当成一般字符串\n",
"trainer = trainers.BpeTrainer(vocab_size=90000, special_tokens=[\"<|endoftext|>\"]) #9w words"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7d680700-1051-4af4-94d6-2ce3071a5979",
"metadata": {},
"outputs": [],
"source": [
"tokenizer.train([\"../01-data_env/data/dna_1g.txt\",\"../01-data_env/data/protein_1g.txt\",\"../01-data_env/data/english_500m.txt\"]\n",
" , trainer=trainer) #all file list, take 10-20 min"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74434ece-2f6e-46fa-9a9e-ff88e9364de8",
"metadata": {},
"outputs": [],
"source": [
"tokenizer.save(\"gene_eng_dict.json\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8ea34e18-6cee-40b9-ba96-d8734153eb9f",
"metadata": {},
"outputs": [],
"source": [
"#然后我们可以使用from_file() 方法从该文件里重新加载 Tokenizer 对象:\n",
"new_tokenizer = Tokenizer.from_file(\"gene_eng_dict.json\")\n",
"\n",
"#要在 🤗 Transformers 中使用这个标记器,我们必须将它包裹在一个 PreTrainedTokenizerFast 类中\n",
"from transformers import GPT2TokenizerFast\n",
"gene_eng_tokenizer = GPT2TokenizerFast(tokenizer_object=new_tokenizer)\n",
"gene_eng_tokenizer.save_pretrained(\"gene_eng_dict\")\n",
"#dna_tokenizer.push_to_hub(\"dna_bpe_dict_1g\", organization=\"dnagpt\", use_auth_token=\"hf_*****\") # push to huggingface"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16c7a3ef-c924-4fbb-b8ab-c12fab43f019",
"metadata": {},
"outputs": [],
"source": [
"tokenizer_new = AutoTokenizer.from_pretrained('gene_eng_dict')\n",
"tokenizer_new.tokenize(\"TGGCGTGAACCCGGGATCGGG,hello world hello gene, MANITWMANHTGWSDFILLGLFRQSKHPALLCVVIFVVFLMAL\")"
]
},
{
"cell_type": "markdown",
"id": "0ca0b2e3-f270-4645-abbb-cb8535e97a0a",
"metadata": {},
"source": [
"## 训练混合模型"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c9b1c9b4-57a8-4711-912d-307e55481f8a",
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer, GPT2LMHeadModel, AutoConfig,GPT2Tokenizer\n",
"from transformers import GPT2Tokenizer,GPT2Model,AutoModel\n",
"from transformers import DataCollatorForLanguageModeling\n",
"from transformers import Trainer, TrainingArguments\n",
"from transformers import LineByLineTextDataset\n",
"from tokenizers import Tokenizer\n",
"from datasets import load_dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3926a959-4224-4d78-9413-dc47a58087e0",
"metadata": {},
"outputs": [],
"source": [
"tokenizer = GPT2Tokenizer.from_pretrained(\"gene_eng_dict\")\n",
"tokenizer.pad_token = tokenizer.eos_token"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1c2f5a6d-d405-40dc-a802-f0c1dff50a1e",
"metadata": {},
"outputs": [],
"source": [
"max_length = 256 #最大输入长度\n",
"\n",
"config = AutoConfig.from_pretrained(\n",
" \"gpt2\",\n",
" vocab_size=len(tokenizer),\n",
" n_ctx=max_length, #最大长度\n",
" bos_token_id=tokenizer.bos_token_id,\n",
" eos_token_id=tokenizer.eos_token_id,\n",
")\n",
"\n",
"model = GPT2LMHeadModel(config) #for pretrain,从头预训练"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8a47141-56a7-4e41-8cfd-1b381a64e2c0",
"metadata": {},
"outputs": [],
"source": [
"# 1. load dna dataset\n",
"raw_dataset = load_dataset('text', \n",
" data_files=[\"../01-data_env/data/dna_1g.txt\",\"../01-data_env/data/protein_1g.txt\",\"../01-data_env/data/english_500m.txt\"])\n",
"\n",
"dataset = raw_dataset[\"train\"].train_test_split(test_size=0.05, shuffle=True)\n",
"\n",
"# 2. tokenize\n",
"def tokenize_function(examples):\n",
" return tokenizer(examples['text'], truncation=True, padding='max_length', max_length=max_length)\n",
"\n",
"# 3. 对数据集应用分词函数\n",
"tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=['text'], num_proc=15) # 设置为你的 CPU 核心数或根据需要调整\n",
"\n",
"# 4. 创建一个数据收集器,用于动态填充和遮蔽\n",
"data_collator = DataCollatorForLanguageModeling(\n",
" tokenizer=tokenizer, mlm=False\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f4f802a2-88e2-49c2-a654-9d6e0996433a",
"metadata": {},
"outputs": [],
"source": [
"run_path = \"gpt2_run\"\n",
"train_epoches = 5\n",
"batch_size = 10\n",
"\n",
"\n",
"training_args = TrainingArguments(\n",
" output_dir=run_path,\n",
" overwrite_output_dir=True,\n",
" num_train_epochs=train_epoches,\n",
" per_device_train_batch_size=batch_size,\n",
" save_steps=2000,\n",
" save_total_limit=2,\n",
" prediction_loss_only=True,\n",
" fp16=True, #v100没法用\n",
" )\n",
"\n",
"\n",
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=tokenized_datasets[\"train\"],\n",
" eval_dataset=tokenized_datasets[\"test\"],\n",
" data_collator=data_collator,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "13fa4a99-ee7c-4d6a-853f-4be04a4ee43c",
"metadata": {},
"outputs": [],
"source": [
"trainer.train()\n",
"trainer.save_model(\"gene_eng_gpt2_v0\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ca452721-3914-49be-a577-d4c257946578",
"metadata": {},
"outputs": [],
"source": [
"import math\n",
"eval_results = trainer.evaluate()\n",
"print(f\"Perplexity: {math.exp(eval_results['eval_loss']):.2f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b7e7a455-0e08-4a75-87c1-0f909829b1c1",
"metadata": {},
"outputs": [],
"source": [
"#upload model\n",
"#model.push_to_hub(\"gene_eng_gpt2_v0\", organization=\"dnagpt\", use_auth_token=\"hf_*******\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|