The Tasks Manager
Exporting a model from one framework to some format (also called backend here) involves specifying inputs and outputs information that the export function needs. The way optimum.exporters
is structured for each backend is as follows:
- Configuration classes containing the information for each model to perform the export.
- Exporting functions using the proper configuration for the model to export.
The role of the TasksManager is to be the main entry-point to load a model given a name and a task, and to get the proper configuration for a given (architecture, backend) couple. That way, there is a centralized place to register the task -> model class
and (architecture, backend) -> configuration
mappings. This allows the export functions to use this, and to rely on the various checks it provides.
Task names
The tasks supported might depend on the backend, but here are the mappings between a task name and the auto class for both PyTorch and TensorFlow.
It is possible to know which tasks are supported for a model for a given backend, by doing:
>>> from optimum.exporters.tasks import TasksManager
>>> model_type = "distilbert"
>>> # For instance, for the ONNX export.
>>> backend = "onnx"
>>> distilbert_tasks = list(TasksManager.get_supported_tasks_for_model_type(model_type, backend).keys())
>>> print(distilbert_tasks)
['default', 'fill-mask', 'text-classification', 'multiple-choice', 'token-classification', 'question-answering']
PyTorch
Task | Auto Class |
---|---|
text-generation , text-generation-with-past | AutoModelForCausalLM |
feature-extraction , feature-extraction-with-past | AutoModel |
fill-mask | AutoModelForMaskedLM |
question-answering | AutoModelForQuestionAnswering |
text2text-generation , text2text-generation-with-past | AutoModelForSeq2SeqLM |
text-classification | AutoModelForSequenceClassification |
token-classification | AutoModelForTokenClassification |
multiple-choice | AutoModelForMultipleChoice |
image-classification | AutoModelForImageClassification |
object-detection | AutoModelForObjectDetection |
image-segmentation | AutoModelForImageSegmentation |
masked-im | AutoModelForMaskedImageModeling |
semantic-segmentation | AutoModelForSemanticSegmentation |
automatic-speech-recognition | AutoModelForSpeechSeq2Seq |
TensorFlow
Task | Auto Class |
---|---|
text-generation , text-generation-with-past | TFAutoModelForCausalLM |
default , default-with-past | TFAutoModel |
fill-mask | TFAutoModelForMaskedLM |
question-answering | TFAutoModelForQuestionAnswering |
text2text-generation , text2text-generation-with-past | TFAutoModelForSeq2SeqLM |
text-classification | TFAutoModelForSequenceClassification |
token-classification | TFAutoModelForTokenClassification |
multiple-choice | TFAutoModelForMultipleChoice |
semantic-segmentation | TFAutoModelForSemanticSegmentation |
Reference
Handles the task name -> model class
and architecture -> configuration
mappings.
create_register
< source >( backend: str overwrite_existing: bool = False ) → Callable[[str, Tuple[str, ...]], Callable[[Type], Type]]
Parameters
- backend (
str
) — The name of the backend that the register function will handle. - overwrite_existing (
bool
, defaults toFalse
) — Whether or not the register function is allowed to overwrite an already existing config.
Returns
Callable[[str, Tuple[str, ...]], Callable[[Type], Type]]
A decorator taking the model type and a the supported tasks.
Creates a register function for the specified backend.
determine_framework
< source >( model_name_or_path: typing.Union[str, pathlib.Path] subfolder: str = '' revision: typing.Optional[str] = None cache_dir: str = '/root/.cache/huggingface/hub' token: typing.Union[bool, str, NoneType] = None ) → str
Parameters
- model_name_or_path (
Union[str, Path]
) — Can be either the model id of a model repo on the Hugging Face Hub, or a path to a local directory containing a model. - subfolder (
str
, optional, defaults to""
) — In case the model files are located inside a subfolder of the model directory / repo on the Hugging Face Hub, you can specify the subfolder name here. - revision (
Optional[str]
, defaults toNone
) — Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id. - cache_dir (
Optional[str]
, optional) — Path to a directory in which a downloaded pretrained model weights have been cached if the standard cache should not be used. - token (
Optional[Union[bool,str]]
, defaults toNone
) — The token to use as HTTP bearer authorization for remote files. IfTrue
, will use the token generated when runninghuggingface-cli login
(stored inhuggingface_hub.constants.HF_TOKEN_PATH
).
Returns
str
The framework to use for the export.
Determines the framework to use for the export.
The priority is in the following order:
- User input via
framework
. - If local checkpoint is provided, use the same framework as the checkpoint.
- If model repo, try to infer the framework from the cache if available, else from the Hub.
- If could not infer, use available framework in environment, with priority given to PyTorch.
Retrieves all the possible tasks.
get_exporter_config_constructor
< source >( exporter: str model: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel'), NoneType] = None task: str = 'feature-extraction' model_type: typing.Optional[str] = None model_name: typing.Optional[str] = None exporter_config_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None library_name: typing.Optional[str] = None ) → ExportConfigConstructor
Parameters
- exporter (
str
) — The exporter to use. - model (
Optional[Union[PreTrainedModel, TFPreTrainedModel]]
, defaults toNone
) — The instance of the model. - task (
str
, defaults to"feature-extraction"
) — The task to retrieve the config for. - model_type (
Optional[str]
, defaults toNone
) — The model type to retrieve the config for. - model_name (
Optional[str]
, defaults toNone
) — The name attribute of the model object, only used for the exception message. - exporter_config_kwargs (
Optional[Dict[str, Any]]
, defaults toNone
) — Arguments that will be passed to the exporter config class when building the config constructor. - library_name (
Optional[str]
, defaults toNone
) — The library name of the model. Can be any of “transformers”, “timm”, “diffusers”, “sentence_transformers”.
Returns
ExportConfigConstructor
The ExportConfig
constructor for the requested backend.
Gets the ExportConfigConstructor
for a model (or alternatively for a model type) and task combination.
get_model_class_for_task
< source >( task: str framework: str = 'pt' model_type: typing.Optional[str] = None model_class_name: typing.Optional[str] = None library: str = 'transformers' )
Parameters
- task (
str
) — The task required. - framework (
str
, defaults to"pt"
) — The framework to use for the export. - model_type (
Optional[str]
, defaults toNone
) — The model type to retrieve the model class for. Some architectures need a custom class to be loaded, and can not be loaded from auto class. - model_class_name (
Optional[str]
, defaults toNone
) — A model class name, allowing to override the default class that would be detected for the task. This parameter is useful for example for “automatic-speech-recognition”, that may map to AutoModelForSpeechSeq2Seq or to AutoModelForCTC. - library (
str
, defaults totransformers
) — The library name of the model. Can be any of “transformers”, “timm”, “diffusers”, “sentence_transformers”.
Attempts to retrieve an AutoModel class from a task name.
get_model_from_task
< source >( task: str model_name_or_path: typing.Union[str, pathlib.Path] subfolder: str = '' revision: typing.Optional[str] = None cache_dir: str = '/root/.cache/huggingface/hub' token: typing.Union[bool, str, NoneType] = None framework: typing.Optional[str] = None torch_dtype: typing.Optional[ForwardRef('torch.dtype')] = None device: typing.Union[ForwardRef('torch.device'), str, NoneType] = None library_name: typing.Optional[str] = None **model_kwargs )
Parameters
- task (
str
) — The task required. - model_name_or_path (
Union[str, Path]
) — Can be either the model id of a model repo on the Hugging Face Hub, or a path to a local directory containing a model. - subfolder (
str
, defaults to""
) — In case the model files are located inside a subfolder of the model directory / repo on the Hugging Face Hub, you can specify the subfolder name here. - revision (
Optional[str]
, optional) — Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id. - cache_dir (
Optional[str]
, optional) — Path to a directory in which a downloaded pretrained model weights have been cached if the standard cache should not be used. - token (
Optional[Union[bool,str]]
, defaults toNone
) — The token to use as HTTP bearer authorization for remote files. IfTrue
, will use the token generated when runninghuggingface-cli login
(stored inhuggingface_hub.constants.HF_TOKEN_PATH
). - framework (
Optional[str]
, optional) — The framework to use for the export. SeeTasksManager.determine_framework
for the priority should none be provided. - torch_dtype (
Optional[torch.dtype]
, defaults toNone
) — Data type to load the model on. PyTorch-only argument. - device (
Optional[torch.device]
, defaults toNone
) — Device to initialize the model on. PyTorch-only argument. For PyTorch, defaults to “cpu”. - library_name (
Optional[str]
, defaults toNone
) — The library name of the model. Can be any of “transformers”, “timm”, “diffusers”, “sentence_transformers”. SeeTasksManager.infer_library_from_model
for the priority should none be provided. - model_kwargs (
Dict[str, Any]
, optional) — Keyword arguments to pass to the model.from_pretrained()
method. - library_name (
Optional[str]
, defaults toNone
) — The library name of the model. Can be any of “transformers”, “timm”, “diffusers”, “sentence_transformers”. SeeTasksManager.infer_library_from_model
for the priority should none be provided.
Retrieves a model from its name and the task to be enabled.
Returns the list of supported architectures by the exporter for a given task. Transformers-specific.
get_supported_tasks_for_model_type
< source >( model_type: str exporter: str model_name: typing.Optional[str] = None library_name: typing.Optional[str] = None ) → TaskNameToExportConfigDict
Parameters
- model_type (
str
) — The model type to retrieve the supported tasks for. - exporter (
str
) — The name of the exporter. - model_name (
Optional[str]
, defaults toNone
) — The name attribute of the model object, only used for the exception message. - library_name (
Optional[str]
, defaults toNone
) — The library name of the model. Can be any of “transformers”, “timm”, “diffusers”, “sentence_transformers”.
Returns
TaskNameToExportConfigDict
The dictionary mapping each task to a corresponding ExportConfig
constructor.
Retrieves the task -> exporter backend config constructors
map from the model type.
infer_library_from_model
< source >( model: typing.Union[str, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel'), ForwardRef('DiffusionPipeline'), typing.Type] subfolder: str = '' revision: typing.Optional[str] = None cache_dir: str = '/root/.cache/huggingface/hub' token: typing.Union[bool, str, NoneType] = None ) → str
Parameters
- model (
Union[str, PreTrainedModel, TFPreTrainedModel, DiffusionPipeline, Type]
) — The model to infer the task from. This can either be the name of a repo on the HuggingFace Hub, an instance of a model, or a model class. - subfolder (
str
, defaults to""
) — In case the model files are located inside a subfolder of the model directory / repo on the Hugging Face Hub, you can specify the subfolder name here. - revision (
Optional[str]
, optional, defaults toNone
) — Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id. - cache_dir (
Optional[str]
, optional) — Path to a directory in which a downloaded pretrained model weights have been cached if the standard cache should not be used. - token (
Optional[Union[bool,str]]
, defaults toNone
) — The token to use as HTTP bearer authorization for remote files. IfTrue
, will use the token generated when runninghuggingface-cli login
(stored inhuggingface_hub.constants.HF_TOKEN_PATH
).
Returns
str
The library name automatically detected from the model repo, model instance, or model class.
Infers the library from the model repo, model instance, or model class.
infer_task_from_model
< source >( model: typing.Union[str, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel'), ForwardRef('DiffusionPipeline'), typing.Type] subfolder: str = '' revision: typing.Optional[str] = None cache_dir: str = '/root/.cache/huggingface/hub' token: typing.Union[bool, str, NoneType] = None library_name: typing.Optional[str] = None ) → str
Parameters
- model (
Union[str, PreTrainedModel, TFPreTrainedModel, DiffusionPipeline, Type]
) — The model to infer the task from. This can either be the name of a repo on the HuggingFace Hub, an instance of a model, or a model class. - subfolder (
str
, optional, defaults to""
) — In case the model files are located inside a subfolder of the model directory / repo on the Hugging Face Hub, you can specify the subfolder name here. - revision (
Optional[str]
, defaults toNone
) — Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id. - cache_dir (
Optional[str]
, optional) — Path to a directory in which a downloaded pretrained model weights have been cached if the standard cache should not be used. - token (
Optional[Union[bool,str]]
, defaults toNone
) — The token to use as HTTP bearer authorization for remote files. IfTrue
, will use the token generated when runninghuggingface-cli login
(stored inhuggingface_hub.constants.HF_TOKEN_PATH
). - library_name (
Optional[str]
, defaults toNone
) — The library name of the model. Can be any of “transformers”, “timm”, “diffusers”, “sentence_transformers”. SeeTasksManager.infer_library_from_model
for the priority should none be provided.
Returns
str
The task name automatically detected from the HF hub repo, model instance, or model class.
Infers the task from the model repo, model instance, or model class.
standardize_model_attributes
< source >( model: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel'), ForwardRef('DiffusionPipeline')] )
Updates the model for export. This function is suitable to make required changes to the models from different libraries to follow transformers style.