Transformers documentation
torchao
torchao
torchao is a PyTorch architecture optimization library with support for custom high performance data types, quantization, and sparsity. It is composable with native PyTorch features such as torch.compile for even faster inference and training.
See the table below for additional torchao features.
Feature | Description |
---|---|
Quantization Aware Training (QAT) | Train quantized models with minimal accuracy loss (see QAT README) |
Float8 Training | High-throughput training with float8 formats (see torchtitan and Accelerate docs) |
Sparsity Support | Semi-structured (2:4) sparsity for faster inference (see Accelerating Neural Network Training with Semi-Structured (2:4) Sparsity blog post) |
Optimizer Quantization | Reduce optimizer state memory with 4 and 8-bit variants of Adam |
KV Cache Quantization | Enables long context inference with lower memory (see KV Cache Quantization) |
Custom Kernels Support | use your own torch.compile compatible ops |
FSDP2 | Composable with FSDP2 for training |
Refer to the torchao README.md for more details about the library.
torchao supports the quantization techniques below.
- A16W8 Float8 Dynamic Quantization
- A16W8 Float8 WeightOnly Quantization
- A8W8 Int8 Dynamic Quantization
- A16W8 Int8 Weight Only Quantization
- A16W4 Int4 Weight Only Quantization
- Autoquantization
Check the table below to see if your hardware is compatible.
Component | Compatibility |
---|---|
CUDA Versions | ✅ cu118, cu126, cu128 |
CPU | ✅ change device_map="cpu" (see examples below) |
Install torchao from PyPi or the PyTorch index with the following commands.
# Updating 🤗 Transformers to the latest version, as the example script below uses the new auto compilation
# Stable release from Pypi which will default to CUDA 12.6
pip install --upgrade torchao transformers
If your torcha version is below 0.10.0, you need to upgrade it, please refer to the deprecation notice for more details.
Quantization examples
TorchAO provides a variety of quantization configurations. Each configuration can be further customized with parameters such as group_size
, scheme
, and layout
to optimize for specific hardware and model architectures.
For a complete list of available configurations, see the quantization API documentation.
You can manually choose the quantization types and settings or automatically select the quantization types.
Create a TorchAoConfig and specify the quantization type and group_size
of the weights to quantize (for int8 weight only and int4 weight only). Set the cache_implementation
to "static"
to automatically torch.compile the forward method.
We’ll show examples for recommended quantization methods based on hardwares, e.g. A100 GPU, H100 GPU, CPU.
H100 GPU
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
quant_config = Float8DynamicActivationFloat8WeightConfig()
# or float8 weight only quantization
# quant_config = Float8WeightOnlyConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
A100 GPU
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int8DynamicActivationInt8WeightConfig
quant_config = Int8DynamicActivationInt8WeightConfig()
# or int8 weight only quantization
# quant_config = Int8WeightOnlyConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
CPU
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int8DynamicActivationInt8WeightConfig
quant_config = Int8DynamicActivationInt8WeightConfig()
# quant_config = Int8WeightOnlyConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="cpu",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
Autoquant
If you want to automatically choose a quantization type for quantizable layers (nn.Linear
) you can use the autoquant API.
The autoquant
API automatically chooses a quantization type by micro-benchmarking on input type and shape and compiling a single linear layer.
Note: autoquant is for GPU only right now.
Create a TorchAoConfig and set to "autoquant"
. Set the cache_implementation
to "static"
to automatically torch.compile the forward method. Finally, call finalize_autoquant
on the quantized model to finalize the quantization and log the input shapes.
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
quantization_config = TorchAoConfig("autoquant", min_sqnr=None)
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
# explicitly call `finalize_autoquant` (may be refactored and removed in the future)
quantized_model.finalize_autoquant()
print(tokenizer.decode(output[0], skip_special_tokens=True))
Serialization
torchao implements torch.Tensor subclasses for maximum flexibility in supporting new quantized torch.Tensor formats. Safetensors serialization and deserialization does not work with torchao.
To avoid arbitrary user code execution, torchao sets weights_only=True
in torch.load to ensure only tensors are loaded. Any known user functions can be whitelisted with add_safe_globals.
# don't serialize model with Safetensors
output_dir = "llama3-8b-int4wo-128"
quantized_model.save_pretrained("llama3-8b-int4wo-128", safe_serialization=False)
Loading quantized models
Loading a quantized model depends on the quantization scheme. For quantization schemes, like int8 and float8, you can quantize the model on any device and also load it on any device. The example below demonstrates quantizing a model on the CPU and then loading it on CUDA.
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int8WeightOnlyConfig
quant_config = Int8WeightOnlyConfig(group_size=128)
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="cpu",
quantization_config=quantization_config
)
# save the quantized model
output_dir = "llama-3.1-8b-torchao-int8-cuda"
quantized_model.save_pretrained(output_dir, safe_serialization=False)
# reload the quantized model
reloaded_model = AutoModelForCausalLM.from_pretrained(
output_dir,
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
output = reloaded_model.generate(**input_ids, max_new_tokens=10)
print(tokenizer.decode(output[0], skip_special_tokens=True))
For int4, the model can only be loaded on the same device it was quantized on because the layout is specific to the device. The example below demonstrates quantizing and loading a model on the CPU.
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int4WeightOnlyConfig
from torchao.dtypes import Int4CPULayout
quant_config = Int4WeightOnlyConfig(group_size=128, layout=Int4CPULayout())
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="cpu",
quantization_config=quantization_config
)
# save the quantized model
output_dir = "llama-3.1-8b-torchao-int4-cpu"
quantized_model.save_pretrained(output_dir, safe_serialization=False)
# reload the quantized model
reloaded_model = AutoModelForCausalLM.from_pretrained(
output_dir,
device_map="cpu",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt")
output = reloaded_model.generate(**input_ids, max_new_tokens=10)
print(tokenizer.decode(output[0], skip_special_tokens=True))
⚠️ Deprecation Notice
Starting with version 0.10.0, the string-based API for quantization configuration (e.g.,
TorchAoConfig("int4_weight_only", group_size=128)
) is deprecated and will be removed in a future release.Please use the new
AOBaseConfig
-based approach instead:# Old way (deprecated) quantization_config = TorchAoConfig("int4_weight_only", group_size=128) # New way (recommended) from torchao.quantization import Int4WeightOnlyConfig quant_config = Int4WeightOnlyConfig(group_size=128) quantization_config = TorchAoConfig(quant_type=quant_config)
The new API offers greater flexibility, better type safety, and access to the full range of features available in torchao.
Here’s how to migrate from common string identifiers to their
AOBaseConfig
equivalents:
Old String API New AOBaseConfig
API"int4_weight_only"
Int4WeightOnlyConfig()
"int8_weight_only"
Int8WeightOnlyConfig()
"int8_dynamic_activation_int8_weight"
Int8DynamicActivationInt8WeightConfig()
All configuration objects accept parameters for customization (e.g.,
group_size
,scheme
,layout
).
Resources
For a better sense of expected performance, view the benchmarks for various models with CUDA and XPU backends. You can also run the code below to benchmark a model yourself.
from torch._inductor.utils import do_bench_using_profiling
from typing import Callable
def benchmark_fn(func: Callable, *args, **kwargs) -> float:
"""Thin wrapper around do_bench_using_profiling"""
no_args = lambda: func(*args, **kwargs)
time = do_bench_using_profiling(no_args)
return time * 1e3
MAX_NEW_TOKENS = 1000
print("int4wo-128 model:", benchmark_fn(quantized_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static"))
bf16_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16)
output = bf16_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static") # auto-compile
print("bf16 model:", benchmark_fn(bf16_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static"))
For best performance, you can use recommended settings by calling torchao.quantization.utils.recommended_inductor_config_setter()
Refer to Other Available Quantization Techniques for more examples and documentation.
Issues
If you encounter any issues with the Transformers integration, please open an issue on the Transformers repository. For issues directly related to torchao, please open an issue on the torchao repository.
< > Update on GitHub