Qwen2.5-VL
Overview
The Qwen2.5-VL model is an update to Qwen2-VL from Qwen team, Alibaba Group.
The abstract from this update is the following:
Qwen2.5-VL marks a major step forward from Qwen2-VL, built upon the latest Qwen2.5 LLM. Weβve accelerated training and testing through the strategic implementation of window attention within the ViT. The ViT architecture itself has been refined with SwiGLU and RMSNorm, aligning it more closely with the LLMβs structure. A key innovation is the expansion of native dynamic resolution to encompass the temporal dimension, in addition to spatial aspects. Furthermore, weβve upgraded MRoPE, incorporating absolute time alignment on the time axis to allow the model to effectively capture temporal dynamics, regardless of frame rate, leading to superior video understanding.
Usage example
Single Media inference
The model can accept both images and videos as input. Hereβs an example code for inference.
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
# Load the model in half-precision on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", device_map="auto")
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
conversation = [
{
"role":"user",
"content":[
{
"type":"image",
"url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"
},
{
"type":"text",
"text":"Describe this image."
}
]
}
]
inputs = processor.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
# Video
conversation = [
{
"role": "user",
"content": [
{"type": "video", "path": "/path/to/video.mp4"},
{"type": "text", "text": "What happened in the video?"},
],
}
]
inputs = processor.apply_chat_template(
conversation,
video_fps=1,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
Batch Mixed Media Inference
The model can batch inputs composed of mixed samples of various types such as images, videos, and text. Here is an example.
# Conversation for the first image
conversation1 = [
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image1.jpg"},
{"type": "text", "text": "Describe this image."}
]
}
]
# Conversation with two images
conversation2 = [
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image2.jpg"},
{"type": "image", "path": "/path/to/image3.jpg"},
{"type": "text", "text": "What is written in the pictures?"}
]
}
]
# Conversation with pure text
conversation3 = [
{
"role": "user",
"content": "who are you?"
}
]
# Conversation with mixed midia
conversation4 = [
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image3.jpg"},
{"type": "image", "path": "/path/to/image4.jpg"},
{"type": "video", "path": "/path/to/video.jpg"},
{"type": "text", "text": "What are the common elements in these medias?"},
],
}
]
conversations = [conversation1, conversation2, conversation3, conversation4]
# Preparation for batch inference
ipnuts = processor.apply_chat_template(
conversations,
video_fps=1,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# Batch Inference
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(output_text)
Usage Tips
Image Resolution trade-off
The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs.
min_pixels = 224*224
max_pixels = 2048*2048
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
In case of limited GPU RAM, one can reduce the resolution as follows:
min_pixels = 256*28*28
max_pixels = 1024*28*28
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
This ensures each image gets encoded using a number between 256-1024 tokens. The 28 comes from the fact that the model uses a patch size of 14 and a temporal patch size of 2 (14 x 2 = 28).
Multiple Image Inputs
By default, images and video content are directly included in the conversation. When handling multiple images, itβs helpful to add labels to the images and videos for better reference. Users can control this behavior with the following settings:
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Hello, how are you?"}
]
},
{
"role": "assistant",
"content": "I'm doing well, thank you for asking. How can I assist you today?"
},
{
"role": "user",
"content": [
{"type": "text", "text": "Can you describe these images and video?"},
{"type": "image"},
{"type": "image"},
{"type": "video"},
{"type": "text", "text": "These are from my vacation."}
]
},
{
"role": "assistant",
"content": "I'd be happy to describe the images and video for you. Could you please provide more context about your vacation?"
},
{
"role": "user",
"content": "It was a trip to the mountains. Can you see the details in the images and video?"
}
]
# default:
prompt_without_id = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Hello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing well, thank you for asking. How can I assist you today?<|im_end|>\n<|im_start|>user\nCan you describe these images and video?<|vision_start|><|image_pad|><|vision_end|><|vision_start|><|image_pad|><|vision_end|><|vision_start|><|video_pad|><|vision_end|>These are from my vacation.<|im_end|>\n<|im_start|>assistant\nI'd be happy to describe the images and video for you. Could you please provide more context about your vacation?<|im_end|>\n<|im_start|>user\nIt was a trip to the mountains. Can you see the details in the images and video?<|im_end|>\n<|im_start|>assistant\n'
# add ids
prompt_with_id = processor.apply_chat_template(conversation, add_generation_prompt=True, add_vision_id=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nPicture 1: <|vision_start|><|image_pad|><|vision_end|>Hello, how are you?<|im_end|>\n<|im_start|>assistant\nI'm doing well, thank you for asking. How can I assist you today?<|im_end|>\n<|im_start|>user\nCan you describe these images and video?Picture 2: <|vision_start|><|image_pad|><|vision_end|>Picture 3: <|vision_start|><|image_pad|><|vision_end|>Video 1: <|vision_start|><|video_pad|><|vision_end|>These are from my vacation.<|im_end|>\n<|im_start|>assistant\nI'd be happy to describe the images and video for you. Could you please provide more context about your vacation?<|im_end|>\n<|im_start|>user\nIt was a trip to the mountains. Can you see the details in the images and video?<|im_end|>\n<|im_start|>assistant\n'
Flash-Attention 2 to speed up generation
First, make sure to install the latest version of Flash Attention 2:
pip install -U flash-attn --no-build-isolation
Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the flash attention repository. FlashAttention-2 can only be used when a model is loaded in torch.float16
or torch.bfloat16
.
To load and run a model using FlashAttention-2, add attn_implementation="flash_attention_2"
when loading the model:
from transformers import Qwen2_5_VLForConditionalGeneration
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
Qwen2_5_VLConfig
class transformers.Qwen2_5_VLConfig
< source >( vocab_size = 152064 hidden_size = 8192 intermediate_size = 29568 num_hidden_layers = 80 num_attention_heads = 64 num_key_value_heads = 8 hidden_act = 'silu' max_position_embeddings = 32768 initializer_range = 0.02 rms_norm_eps = 1e-05 use_cache = True tie_word_embeddings = False rope_theta = 1000000.0 use_sliding_window = False sliding_window = 4096 max_window_layers = 80 attention_dropout = 0.0 vision_config = None rope_scaling = None **kwargs )
Parameters
- vocab_size (
int
, optional, defaults to 152064) — Vocabulary size of the Qwen2_5_VL model. Defines the number of different tokens that can be represented by theinputs_ids
passed when calling Qwen2_5_VLModel - hidden_size (
int
, optional, defaults to 8192) — Dimension of the hidden representations. - intermediate_size (
int
, optional, defaults to 29568) — Dimension of the MLP representations. - num_hidden_layers (
int
, optional, defaults to 80) — Number of hidden layers in the Transformer encoder. - num_attention_heads (
int
, optional, defaults to 64) — Number of attention heads for each attention layer in the Transformer encoder. - num_key_value_heads (
int
, optional, defaults to 8) — This is the number of key_value heads that should be used to implement Grouped Query Attention. Ifnum_key_value_heads=num_attention_heads
, the model will use Multi Head Attention (MHA), ifnum_key_value_heads=1
the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout this paper. If it is not specified, will default to32
. - hidden_act (
str
orfunction
, optional, defaults to"silu"
) — The non-linear activation function (function or string) in the decoder. - max_position_embeddings (
int
, optional, defaults to 32768) — The maximum sequence length that this model might ever be used with. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - rms_norm_eps (
float
, optional, defaults to 1e-05) — The epsilon used by the rms normalization layers. - use_cache (
bool
, optional, defaults toTrue
) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant ifconfig.is_decoder=True
. - tie_word_embeddings (
bool
, optional, defaults toFalse
) — Whether the model’s input and output word embeddings should be tied. - rope_theta (
float
, optional, defaults to 1000000.0) — The base period of the RoPE embeddings. - use_sliding_window (
bool
, optional, defaults toFalse
) — Whether to use sliding window attention. - sliding_window (
int
, optional, defaults to 4096) — Sliding window attention (SWA) window size. If not specified, will default to4096
. - max_window_layers (
int
, optional, defaults to 80) — The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. - attention_dropout (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - vision_config (
Dict
, optional) — The config for the visual encoder initialization. - rope_scaling (
Dict
, optional) — Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longermax_position_embeddings
, we recommend you to update this value accordingly. Expected contents:rope_type
(str
): The sub-variant of RoPE to use. Can be one of [‘default’, ‘linear’, ‘dynamic’, ‘yarn’, ‘longrope’, ‘llama3’], with ‘default’ being the original RoPE implementation.factor
(float
, optional): Used with all rope types except ‘default’. The scaling factor to apply to the RoPE embeddings. In most scaling types, afactor
of x will enable the model to handle sequences of length x original maximum pre-trained length.original_max_position_embeddings
(int
, optional): Used with ‘dynamic’, ‘longrope’ and ‘llama3’. The original max position embeddings used during pretraining.attention_factor
(float
, optional): Used with ‘yarn’ and ‘longrope’. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using thefactor
field to infer the suggested value.beta_fast
(float
, optional): Only used with ‘yarn’. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32.beta_slow
(float
, optional): Only used with ‘yarn’. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1.short_factor
(List[float]
, optional): Only used with ‘longrope’. The scaling factor to be applied to short contexts (<original_max_position_embeddings
). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2long_factor
(List[float]
, optional): Only used with ‘longrope’. The scaling factor to be applied to long contexts (<original_max_position_embeddings
). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2low_freq_factor
(float
, optional): Only used with ‘llama3’. Scaling factor applied to low frequency components of the RoPEhigh_freq_factor
(float
, optional*): Only used with ‘llama3’. Scaling factor applied to high frequency components of the RoPE
This is the configuration class to store the configuration of a Qwen2_5_VLModel. It is used to instantiate a Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of Qwen2-VL-7B-Instruct Qwen/Qwen2-VL-7B-Instruct.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
>>> from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLConfig
>>> # Initializing a Qwen2_5_VL style configuration
>>> configuration = Qwen2_5_VLConfig()
>>> # Initializing a model from the Qwen2-VL-7B style configuration
>>> model = Qwen2_5_VLForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Qwen2_5_VLProcessor
class transformers.Qwen2_5_VLProcessor
< source >( image_processor = None tokenizer = None chat_template = None **kwargs )
Parameters
- image_processor (Qwen2VLImageProcessor, optional) — The image processor is a required input.
- tokenizer (Qwen2TokenizerFast, optional) — The tokenizer is a required input.
- chat_template (
str
, optional) — A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
Constructs a Qwen2.5-VL processor which wraps a Qwen2.5-VL image processor and a Qwen2 tokenizer into a single processor.
Qwen2_5_VLProcessor offers all the functionalities of Qwen2VLImageProcessor and Qwen2TokenizerFast. See the
__call__()
and decode() for more information.
This method forwards all its arguments to Qwen2TokenizerFastβs batch_decode(). Please refer to the docstring of this method for more information.
This method forwards all its arguments to Qwen2TokenizerFastβs decode(). Please refer to the docstring of this method for more information.
post_process_image_text_to_text
< source >( generated_outputs ) β List[str]
Post-process the output of the model to decode the text.
Qwen2_5_VLModel
class transformers.Qwen2_5_VLModel
< source >( config: Qwen2_5_VLConfig )
Parameters
- config (Qwen2_5_VLConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Qwen2_5_VL Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None )
Qwen2_5_VLForConditionalGeneration
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[typing.List[torch.FloatTensor]] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None pixel_values: typing.Optional[torch.Tensor] = None pixel_values_videos: typing.Optional[torch.FloatTensor] = None image_grid_thw: typing.Optional[torch.LongTensor] = None video_grid_thw: typing.Optional[torch.LongTensor] = None rope_deltas: typing.Optional[torch.LongTensor] = None cache_position: typing.Optional[torch.LongTensor] = None second_per_grid_ts: typing.Optional[torch.Tensor] = None ) β transformers.models.qwen2_5_vl.modeling_qwen2_5_vl.Qwen2_5_VLCausalLMOutputWithPast
or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If
past_key_values
is used, optionally only the lastdecoder_input_ids
have to be input (seepast_key_values
).If you want to change padding behavior, you should read
modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more information on the default strategy.- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. What are position IDs? - past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.If
past_key_values
are used, the user can optionally input only the lastdecoder_input_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of alldecoder_input_ids
of shape(batch_size, sequence_length)
. - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - pixel_values (
torch.FloatTensor
of shape(seq_length, num_channels * image_size * image_size)) -- The tensors corresponding to the input images. Pixel values can be obtained using [AutoImageProcessor](/docs/transformers/v4.49.0/en/model_doc/auto#transformers.AutoImageProcessor). See
Qwen2_5_VLImageProcessor.callfor details. [Qwen2_5_VLProcessor](/docs/transformers/v4.49.0/en/model_doc/qwen2_5_vl#transformers.Qwen2_5_VLProcessor) uses
Qwen2_5_VLImageProcessor` for processing images. - pixel_values_videos (
torch.FloatTensor
of shape(seq_length, num_channels * temporal_size * image_size * image_size)) -- The tensors corresponding to the input videos. Pixel values can be obtained using [AutoImageProcessor](/docs/transformers/v4.49.0/en/model_doc/auto#transformers.AutoImageProcessor). See
Qwen2_5_VLImageProcessor.callfor details. [Qwen2_5_VLProcessor](/docs/transformers/v4.49.0/en/model_doc/qwen2_5_vl#transformers.Qwen2_5_VLProcessor) uses
Qwen2_5_VLImageProcessor` for processing videos. - image_grid_thw (
torch.LongTensor
of shape(num_images, 3)
, optional) — The temporal, height and width of feature shape of each image in LLM. - video_grid_thw (
torch.LongTensor
of shape(num_videos, 3)
, optional) — The temporal, height and width of feature shape of each video in LLM. - rope_deltas (
torch.LongTensor
of shape(batch_size, )
, optional) — The rope index difference between sequence length and multimodal rope. - Args —
labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional): Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]
or -100 (seeinput_ids
docstring). Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
.
Returns
transformers.models.qwen2_5_vl.modeling_qwen2_5_vl.Qwen2_5_VLCausalLMOutputWithPast
or tuple(torch.FloatTensor)
A transformers.models.qwen2_5_vl.modeling_qwen2_5_vl.Qwen2_5_VLCausalLMOutputWithPast
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (Qwen2_5_VLConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) β Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) β Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
)Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
rope_deltas (
torch.LongTensor
of shape(batch_size, )
, optional) β The rope index difference between sequence length and multimodal rope.
The Qwen2_5_VLForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
>>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
>>> messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."