Llama-3.2-1B-Instruct_v2
This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2356
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4565 | 0.0333 | 100 | 0.4058 |
0.3313 | 0.0667 | 200 | 0.3428 |
0.3139 | 0.1 | 300 | 0.3192 |
0.2903 | 0.1333 | 400 | 0.3034 |
0.2639 | 0.1667 | 500 | 0.2944 |
0.2688 | 0.2 | 600 | 0.2869 |
0.3097 | 0.2333 | 700 | 0.2791 |
0.2462 | 0.2667 | 800 | 0.2735 |
0.3257 | 0.3 | 900 | 0.2684 |
0.2738 | 0.3333 | 1000 | 0.2638 |
0.2572 | 0.3667 | 1100 | 0.2598 |
0.234 | 0.4 | 1200 | 0.2566 |
0.2233 | 0.4333 | 1300 | 0.2537 |
0.2996 | 0.4667 | 1400 | 0.2515 |
0.2178 | 0.5 | 1500 | 0.2490 |
0.2251 | 0.5333 | 1600 | 0.2470 |
0.262 | 0.5667 | 1700 | 0.2450 |
0.2683 | 0.6 | 1800 | 0.2430 |
0.1966 | 0.6333 | 1900 | 0.2416 |
0.2451 | 0.6667 | 2000 | 0.2403 |
0.2247 | 0.7 | 2100 | 0.2393 |
0.1865 | 0.7333 | 2200 | 0.2384 |
0.2837 | 0.7667 | 2300 | 0.2378 |
0.2312 | 0.8 | 2400 | 0.2371 |
0.239 | 0.8333 | 2500 | 0.2365 |
0.2064 | 0.8667 | 2600 | 0.2362 |
0.208 | 0.9 | 2700 | 0.2358 |
0.2588 | 0.9333 | 2800 | 0.2356 |
0.2029 | 0.9667 | 2900 | 0.2356 |
0.2404 | 1.0 | 3000 | 0.2356 |
Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for doganmustafa/Llama-3.2-1B-Instruct_v2
Base model
meta-llama/Llama-3.2-1B-Instruct