deberta-v3-xsmall-finetuned-DAGPap22

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0798
  • Accuracy: 0.9907
  • F1: 0.9934

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.5e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 402 0.1626 0.9477 0.9616
0.4003 2.0 804 0.0586 0.9794 0.9853
0.1075 3.0 1206 0.0342 0.9907 0.9933
0.0581 4.0 1608 0.1140 0.9776 0.9838
0.0245 5.0 2010 0.1409 0.9776 0.9842
0.0245 6.0 2412 0.0732 0.9832 0.9881
0.0167 7.0 2814 0.1996 0.9682 0.9778
0.0139 8.0 3216 0.1219 0.9850 0.9894
0.006 9.0 3618 0.0670 0.9907 0.9934
0.0067 10.0 4020 0.1036 0.9869 0.9907
0.0067 11.0 4422 0.1220 0.9776 0.9838
0.0041 12.0 4824 0.1768 0.9776 0.9839
0.0007 13.0 5226 0.0943 0.9888 0.9920
0.0 14.0 5628 0.0959 0.9907 0.9934
0.0054 15.0 6030 0.0915 0.9888 0.9921
0.0054 16.0 6432 0.1618 0.9794 0.9855
0.0019 17.0 6834 0.0794 0.9907 0.9934
0.0 18.0 7236 0.0799 0.9907 0.9934
0.0 19.0 7638 0.0797 0.9907 0.9934
0.0 20.0 8040 0.0798 0.9907 0.9934

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.