domenicrosati's picture
update model card README.md
a8fad61
|
raw
history blame
1.65 kB
---
license: mit
tags:
- text-classification
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: deberta-v3-xsmall-with-biblio-context-finetuned-review_classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-xsmall-with-biblio-context-finetuned-review_classifier
This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1580
- Accuracy: 0.9505
- F1: 0.7441
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.1551 | 1.0 | 6667 | 0.1765 | 0.9500 | 0.7184 |
| 0.1249 | 2.0 | 13334 | 0.1580 | 0.9505 | 0.7441 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1