domischwimmbeck's picture
update model card README.md
d78a491
|
raw
history blame
2.26 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-german-cased-20000-ner
    results: []

bert-base-german-cased-20000-ner

This model is a fine-tuned version of bert-base-german-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0368
  • Precision: 0.8221
  • Recall: 0.875
  • F1: 0.8478
  • Accuracy: 0.9920

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.1 64 0.0427 0.7796 0.8714 0.8229 0.9893
No log 0.19 128 0.0472 0.5471 0.85 0.6657 0.9831
No log 0.29 192 0.0384 0.7897 0.8179 0.8035 0.9899
No log 0.38 256 0.0488 0.4970 0.8786 0.6348 0.9793
No log 0.48 320 0.0412 0.7548 0.8464 0.7980 0.9895
No log 0.58 384 0.0437 0.8373 0.8821 0.8591 0.9914
No log 0.67 448 0.0399 0.7727 0.85 0.8095 0.9899
0.0914 0.77 512 0.0394 0.7859 0.8786 0.8297 0.9899
0.0914 0.86 576 0.0368 0.8221 0.875 0.8478 0.9920

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.9.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1