|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- germa_ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-base-german-cased-fine-tuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: germa_ner |
|
type: germa_ner |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8089260808926081 |
|
- name: Recall |
|
type: recall |
|
value: 0.872836719337848 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8396670285921101 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9748511630761677 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-german-cased-fine-tuned-ner |
|
|
|
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the germa_ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0966 |
|
- Precision: 0.8089 |
|
- Recall: 0.8728 |
|
- F1: 0.8397 |
|
- Accuracy: 0.9749 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.159 | 1.0 | 737 | 0.0922 | 0.7472 | 0.8461 | 0.7936 | 0.9703 | |
|
| 0.0714 | 2.0 | 1474 | 0.0916 | 0.7886 | 0.8713 | 0.8279 | 0.9731 | |
|
| 0.0319 | 3.0 | 2211 | 0.0966 | 0.8089 | 0.8728 | 0.8397 | 0.9749 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|