doof-ferb's picture
Upload 2 files
828e0c2 verified
|
raw
history blame
1.72 kB
metadata
license: apache-2.0
datasets:
  - google/fleurs
  - mozilla-foundation/common_voice_16_1
  - vivos
  - doof-ferb/vlsp2020_vinai_100h
  - doof-ferb/fpt_fosd
  - doof-ferb/infore1_25hours
language:
  - vi
library_name: peft
base_model: openai/whisper-large-v3
pipeline_tag: automatic-speech-recognition
metrics:
  - wer
model-index:
  - name: doof-ferb/whisper-large-peft-lora-vi
    results:
      - task:
          type: automatic-speech-recognition
        dataset:
          type: mozilla-foundation/common_voice_16_1
          name: Mozilla CommonVoice (Vietnamese) v16.1
          config: vi
          split: test
        metrics:
          - type: wer
            value: 14.7
            verified: false
      - task:
          type: automatic-speech-recognition
        dataset:
          type: google/fleurs
          name: Google FLEURS (Vietnamese)
          config: vi_vn
          split: test
        metrics:
          - type: wer
            value: 14.7
            verified: false
      - task:
          type: automatic-speech-recognition
        dataset:
          type: vivos
          name: ĐHQG TPHCM VIVOS
          split: test
        metrics:
          - type: wer
            value: 9.4
            verified: false

whisper large v3 PEFT LoRA trained on a big collection of vietnamese speech datasets

TODO:

  • training then publish checkpoint
  • evaluate WER on Common Voice & FLEURS & VIVOS

3.6k steps, warm-up 5%, batch size 16×2 (kaggle free T4×2), train 3.6% of 1.6B params

manually evaluate WER on test set - vietnamese part:

@ float16 CommonVoice v16.1 FLEURS VIVOS
original whisper-large-v3 16.2% 8.3% 12.3%
this LoRA 14.7% 14.7% 9.4%

all training + evaluation scripts are on my repo: https://github.com/phineas-pta/fine-tune-whisper-vi