BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dpokhrel/bge-base-financial-matryoshka")
# Run inference
sentences = [
'CMS made significant changes to the structure of the hierarchical condition category model in version 28, which may impact risk adjustment factor scores for a larger percentage of Medicare Advantage beneficiaries and could result in changes to beneficiary RAF scores with or without a change in the patient’s health status.',
'What significant regulatory change did CMS make to the hierarchical condition category model in its version 28?',
'What is the primary method by which the company manages its cash, cash equivalents, and marketable securities?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6986 |
cosine_accuracy@3 | 0.8443 |
cosine_accuracy@5 | 0.8814 |
cosine_accuracy@10 | 0.9271 |
cosine_precision@1 | 0.6986 |
cosine_precision@3 | 0.2814 |
cosine_precision@5 | 0.1763 |
cosine_precision@10 | 0.0927 |
cosine_recall@1 | 0.6986 |
cosine_recall@3 | 0.8443 |
cosine_recall@5 | 0.8814 |
cosine_recall@10 | 0.9271 |
cosine_ndcg@10 | 0.8157 |
cosine_mrr@10 | 0.7796 |
cosine_map@100 | 0.7822 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.71 |
cosine_accuracy@3 | 0.8457 |
cosine_accuracy@5 | 0.8786 |
cosine_accuracy@10 | 0.9271 |
cosine_precision@1 | 0.71 |
cosine_precision@3 | 0.2819 |
cosine_precision@5 | 0.1757 |
cosine_precision@10 | 0.0927 |
cosine_recall@1 | 0.71 |
cosine_recall@3 | 0.8457 |
cosine_recall@5 | 0.8786 |
cosine_recall@10 | 0.9271 |
cosine_ndcg@10 | 0.8195 |
cosine_mrr@10 | 0.7849 |
cosine_map@100 | 0.7873 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7086 |
cosine_accuracy@3 | 0.8343 |
cosine_accuracy@5 | 0.8643 |
cosine_accuracy@10 | 0.9143 |
cosine_precision@1 | 0.7086 |
cosine_precision@3 | 0.2781 |
cosine_precision@5 | 0.1729 |
cosine_precision@10 | 0.0914 |
cosine_recall@1 | 0.7086 |
cosine_recall@3 | 0.8343 |
cosine_recall@5 | 0.8643 |
cosine_recall@10 | 0.9143 |
cosine_ndcg@10 | 0.8116 |
cosine_mrr@10 | 0.7788 |
cosine_map@100 | 0.7821 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.69 |
cosine_accuracy@3 | 0.8271 |
cosine_accuracy@5 | 0.86 |
cosine_accuracy@10 | 0.91 |
cosine_precision@1 | 0.69 |
cosine_precision@3 | 0.2757 |
cosine_precision@5 | 0.172 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.69 |
cosine_recall@3 | 0.8271 |
cosine_recall@5 | 0.86 |
cosine_recall@10 | 0.91 |
cosine_ndcg@10 | 0.8014 |
cosine_mrr@10 | 0.7665 |
cosine_map@100 | 0.7699 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6657 |
cosine_accuracy@3 | 0.79 |
cosine_accuracy@5 | 0.8286 |
cosine_accuracy@10 | 0.8857 |
cosine_precision@1 | 0.6657 |
cosine_precision@3 | 0.2633 |
cosine_precision@5 | 0.1657 |
cosine_precision@10 | 0.0886 |
cosine_recall@1 | 0.6657 |
cosine_recall@3 | 0.79 |
cosine_recall@5 | 0.8286 |
cosine_recall@10 | 0.8857 |
cosine_ndcg@10 | 0.7733 |
cosine_mrr@10 | 0.7375 |
cosine_map@100 | 0.7417 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 10 tokens
- mean: 46.37 tokens
- max: 248 tokens
- min: 7 tokens
- mean: 20.57 tokens
- max: 51 tokens
- Samples:
positive anchor Scenario analysis is used to quantify the impact of a specified event, including how the event impacts multiple risk factors simultaneously. For example, for sovereign stress testing, it calculates potential exposure related to sovereign positions as well as the corresponding debt, equity, and currency exposures that may be impacted by sovereign distress.
How does Goldman Sachs utilize scenario analysis in its risk management strategy?
The company is involved in various other legal proceedings incidental to the conduct of our business, including, but not limited to, claims and allegations related to wage and hour violations, unlawful termination, employment practices, product liability, privacy and cybersecurity, environmental matters, and intellectual property rights or regulatory compliance.
What types of legal proceedings is the company currently involved in?
In 2023, $505 million was utilized for common stock repurchases.
How much cash was utilized for common stock repurchases in the year ended December 31, 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truehalf_precision_backend
: cpu_ampload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: cpu_ampbf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5241 | - | - | - | - | - |
0.9746 | 12 | - | 0.7486 | 0.7656 | 0.7662 | 0.7108 | 0.7679 |
1.6244 | 20 | 0.658 | - | - | - | - | - |
1.9492 | 24 | - | 0.7656 | 0.7793 | 0.7843 | 0.7348 | 0.7798 |
2.4365 | 30 | 0.4743 | - | - | - | - | - |
2.9239 | 36 | - | 0.7683 | 0.7814 | 0.7859 | 0.7400 | 0.7812 |
3.2487 | 40 | 0.4241 | - | - | - | - | - |
3.8985 | 48 | - | 0.7699 | 0.7821 | 0.7873 | 0.7417 | 0.7822 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.43.4
- PyTorch: 2.4.0.dev20240607+cu118
- Accelerate: 0.32.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for dpokhrel/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.699
- Cosine Accuracy@3 on dim 768self-reported0.844
- Cosine Accuracy@5 on dim 768self-reported0.881
- Cosine Accuracy@10 on dim 768self-reported0.927
- Cosine Precision@1 on dim 768self-reported0.699
- Cosine Precision@3 on dim 768self-reported0.281
- Cosine Precision@5 on dim 768self-reported0.176
- Cosine Precision@10 on dim 768self-reported0.093
- Cosine Recall@1 on dim 768self-reported0.699
- Cosine Recall@3 on dim 768self-reported0.844