How to use

Here is how to use this model in PyTorch:

from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from PIL import Image

processor = TrOCRProcessor.from_pretrained('dsupa/mangaocr-hoogberta-v2')
model = VisionEncoderDecoderModel.from_pretrained('dsupa/mangaocr-hoogberta-v2')

def predict(image_path):
    image = Image.open(image_path).convert("RGB")
    pixel_values = processor(images=image, return_tensors="pt").pixel_values
    generated_ids = model.generate(pixel_values)
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

    return generated_text

image_path = "your_img.jpg"
pred = predit(image_path)
print(pred)
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.