metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-mk
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: mk_mk
split: test
args: mk_mk
metrics:
- name: Wer
type: wer
value: 0.14327357528057136
wav2vec2-xls-r-300m-mk
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on Macedonian using the train and validation splits of the FLEURS dataset. It achieves the following results on the evaluation set:
- Loss: 0.1589
- Wer: 0.1433
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.609 | 2.33 | 400 | 0.3751 | 0.4184 |
0.232 | 4.65 | 800 | 0.1694 | 0.1960 |
0.0773 | 6.98 | 1200 | 0.1630 | 0.1598 |
0.0407 | 9.3 | 1600 | 0.1589 | 0.1433 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0