|
--- |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: dung1308/RM_system_not_mixed__NLP_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# dung1308/RM_system_not_mixed__NLP_model |
|
|
|
This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 4.2670 |
|
- Validation Loss: 4.3108 |
|
- Epoch: 12 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -517, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 5.4281 | 4.6304 | 0 | |
|
| 4.5092 | 4.2831 | 1 | |
|
| 4.2234 | 4.2641 | 2 | |
|
| 4.2383 | 4.3122 | 3 | |
|
| 4.2406 | 4.2459 | 4 | |
|
| 4.2113 | 4.2687 | 5 | |
|
| 4.2721 | 4.2425 | 6 | |
|
| 4.3064 | 4.2370 | 7 | |
|
| 4.2685 | 4.2999 | 8 | |
|
| 4.3104 | nan | 9 | |
|
| 4.2444 | 4.2957 | 10 | |
|
| 4.2041 | 4.2465 | 11 | |
|
| 4.2670 | 4.3108 | 12 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- TensorFlow 2.9.2 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|