Quantizations of https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Instruct
Inference Clients/UIs
From original readme
Mistral-NeMo-Minitron-8B-Instruct is a model for generating responses for various text-generation tasks including roleplaying, retrieval augmented generation, and function calling. It is a fine-tuned version of nvidia/Mistral-NeMo-Minitron-8B-Base, which was pruned and distilled from Mistral-NeMo 12B using our LLM compression technique. The model was trained using a multi-stage SFT and preference-based alignment technique with NeMo Aligner. For details on the alignment technique, please refer to the Nemotron-4 340B Technical Report. The model supports a context length of 8,192 tokens.
Try this model on build.nvidia.com.
Model Developer: NVIDIA
Model Dates: Mistral-NeMo-Minitron-8B-Instruct was trained between August 2024 and September 2024.
License
Model Architecture
Mistral-NeMo-Minitron-8B-Instruct uses a model embedding size of 4096, 32 attention heads, MLP intermediate dimension of 11520, with 40 layers in total. Additionally, it uses Grouped-Query Attention (GQA) and Rotary Position Embeddings (RoPE).
Architecture Type: Transformer Decoder (Auto-regressive Language Model)
Network Architecture: Mistral-NeMo
Prompt Format:
We recommend using the following prompt template, which was used to fine-tune the model. The model may not perform optimally without it.
<extra_id_0>System
{system prompt}
<extra_id_1>User
{prompt}
<extra_id_1>Assistant\n
- Note that a newline character
\n
should be added at the end of the prompt. - We recommend using
<extra_id_1>
as a stop token.
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Mistral-NeMo-Minitron-8B-Instruct")
model = AutoModelForCausalLM.from_pretrained("nvidia/Mistral-NeMo-Minitron-8B-Instruct")
# Use the prompt template
messages = [
{
"role": "system",
"content": "You are a friendly chatbot who always responds in the style of a pirate",
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(tokenized_chat, stop_strings=["<extra_id_1>"], tokenizer=tokenizer)
print(tokenizer.decode(outputs[0]))
You can also use pipeline
but you need to create a tokenizer object and assign it to the pipeline manually.
from transformers import AutoTokenizer
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("nvidia/Mistral-NeMo-Minitron-8B-Instruct")
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="nvidia/Mistral-NeMo-Minitron-8B-Instruct")
pipe(messages, max_new_tokens=64, stop_strings=["<extra_id_1>"], tokenizer=tokenizer)
- Downloads last month
- 194