|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: dwiedarioo/vit-base-patch16-224-in21k-brainmri |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# dwiedarioo/vit-base-patch16-224-in21k-brainmri |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.7408 |
|
- Train Accuracy: 0.9381 |
|
- Train Top-3-accuracy: 0.9824 |
|
- Validation Loss: 0.7499 |
|
- Validation Accuracy: 0.9114 |
|
- Validation Top-3-accuracy: 0.9806 |
|
- Epoch: 3 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 1230, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch | |
|
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| |
|
| 2.2199 | 0.4215 | 0.6564 | 1.8634 | 0.5702 | 0.8099 | 0 | |
|
| 1.5448 | 0.6976 | 0.8797 | 1.3110 | 0.7603 | 0.9028 | 1 | |
|
| 1.0494 | 0.8694 | 0.9519 | 0.9507 | 0.8855 | 0.9590 | 2 | |
|
| 0.7408 | 0.9381 | 0.9824 | 0.7499 | 0.9114 | 0.9806 | 3 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- TensorFlow 2.14.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|