dwiedarioo/vit-base-patch16-224-in21k-datascience8

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0061
  • Train Accuracy: 1.0
  • Train Top-3-accuracy: 1.0
  • Validation Loss: 0.1289
  • Validation Accuracy: 0.9633
  • Validation Top-3-accuracy: 0.9935
  • Epoch: 53

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 8200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Train Accuracy Train Top-3-accuracy Validation Loss Validation Accuracy Validation Top-3-accuracy Epoch
2.2657 0.4219 0.6250 1.9041 0.5875 0.8121 0
1.5469 0.7006 0.8771 1.3444 0.7322 0.9136 1
1.0263 0.8519 0.9553 0.9408 0.8769 0.9719 2
0.6814 0.9412 0.9893 0.6752 0.9244 0.9827 3
0.4663 0.9779 0.9966 0.5106 0.9460 0.9935 4
0.3372 0.9927 0.9981 0.4127 0.9503 0.9892 5
0.2526 0.9958 0.9989 0.3468 0.9546 0.9914 6
0.2015 0.9973 1.0 0.3072 0.9568 0.9914 7
0.1663 0.9981 1.0 0.2609 0.9611 0.9935 8
0.1391 0.9989 0.9996 0.2353 0.9654 0.9957 9
0.1186 0.9992 1.0 0.2889 0.9438 0.9914 10
0.1201 0.9954 0.9996 0.3820 0.9006 0.9762 11
0.1402 0.9905 1.0 0.2185 0.9546 0.9892 12
0.0812 1.0 1.0 0.1898 0.9590 0.9914 13
0.0697 1.0 1.0 0.1757 0.9611 0.9935 14
0.0618 1.0 1.0 0.1698 0.9611 0.9914 15
0.0554 1.0 1.0 0.1625 0.9611 0.9935 16
0.0500 1.0 1.0 0.1592 0.9611 0.9935 17
0.0454 1.0 1.0 0.1526 0.9611 0.9935 18
0.0415 1.0 1.0 0.1494 0.9611 0.9935 19
0.0380 1.0 1.0 0.1473 0.9590 0.9935 20
0.0350 1.0 1.0 0.1443 0.9590 0.9935 21
0.0323 1.0 1.0 0.1403 0.9611 0.9935 22
0.0299 1.0 1.0 0.1408 0.9590 0.9935 23
0.0277 1.0 1.0 0.1368 0.9590 0.9935 24
0.0258 1.0 1.0 0.1369 0.9611 0.9935 25
0.0241 1.0 1.0 0.1361 0.9590 0.9935 26
0.0225 1.0 1.0 0.1355 0.9590 0.9935 27
0.0211 1.0 1.0 0.1349 0.9611 0.9935 28
0.0197 1.0 1.0 0.1312 0.9590 0.9935 29
0.0185 1.0 1.0 0.1317 0.9590 0.9935 30
0.0175 1.0 1.0 0.1328 0.9611 0.9935 31
0.0165 1.0 1.0 0.1318 0.9611 0.9935 32
0.0155 1.0 1.0 0.1320 0.9611 0.9935 33
0.0147 1.0 1.0 0.1294 0.9611 0.9935 34
0.0139 1.0 1.0 0.1306 0.9611 0.9935 35
0.0132 1.0 1.0 0.1291 0.9611 0.9935 36
0.0125 1.0 1.0 0.1295 0.9611 0.9935 37
0.0119 1.0 1.0 0.1306 0.9611 0.9935 38
0.0113 1.0 1.0 0.1275 0.9633 0.9935 39
0.0107 1.0 1.0 0.1282 0.9633 0.9935 40
0.0102 1.0 1.0 0.1272 0.9633 0.9935 41
0.0097 1.0 1.0 0.1282 0.9633 0.9935 42
0.0093 1.0 1.0 0.1269 0.9633 0.9935 43
0.0089 1.0 1.0 0.1286 0.9633 0.9935 44
0.0085 1.0 1.0 0.1278 0.9633 0.9935 45
0.0081 1.0 1.0 0.1285 0.9633 0.9935 46
0.0078 1.0 1.0 0.1291 0.9633 0.9935 47
0.0074 1.0 1.0 0.1290 0.9633 0.9935 48
0.0071 1.0 1.0 0.1283 0.9633 0.9935 49
0.0068 1.0 1.0 0.1292 0.9633 0.9935 50
0.0066 1.0 1.0 0.1295 0.9633 0.9935 51
0.0063 1.0 1.0 0.1290 0.9633 0.9935 52
0.0061 1.0 1.0 0.1289 0.9633 0.9935 53

Framework versions

  • Transformers 4.35.2
  • TensorFlow 2.14.0
  • Tokenizers 0.15.0
Downloads last month
26
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dwiedarioo/vit-base-patch16-224-in21k-datascience8

Finetuned
(1772)
this model