See axolotl config
axolotl version: 0.5.2
base_model: Qwen/Qwen2.5-14B-Instruct
model_type: Qwen2ForCausalLM
tokenizer_type: Qwen2Tokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: dwikitheduck/genesist-inst
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: false
pad_to_sequence_len:
adapter: lora
lora_model_dir:
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: axolotl-soca
wandb_entity: soca-ai
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: dwikitheduck/gen-inst-1
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 3
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
save_safetensors: true
gen-inst-1
This model is a fine-tuned version of Qwen/Qwen2.5-14B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0180
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3674 | 0.0002 | 1 | 1.5999 |
0.8378 | 0.3334 | 1873 | 1.0342 |
0.9453 | 0.6668 | 3746 | 1.0180 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 34.03 |
IFEval (0-Shot) | 77.50 |
BBH (3-Shot) | 48.32 |
MATH Lvl 5 (4-Shot) | 4.46 |
GPQA (0-shot) | 16.22 |
MuSR (0-shot) | 12.27 |
MMLU-PRO (5-shot) | 45.43 |
- Downloads last month
- 0