|
--- |
|
base_model: openai/whisper-large-v2 |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: whisper-large-v2-ft-cv16-1__car100-all-format-avg_copy2x_voiceless-241219-v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-large-v2-ft-cv16-1__car100-all-format-avg_copy2x_voiceless-241219-v1 |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1126 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.2 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 4.4773 | 1.0 | 65 | 2.3737 | |
|
| 1.4068 | 2.0 | 130 | 0.3870 | |
|
| 0.1629 | 3.0 | 195 | 0.1140 | |
|
| 0.1225 | 4.0 | 260 | 0.1085 | |
|
| 0.106 | 5.0 | 325 | 0.1079 | |
|
| 0.0935 | 6.0 | 390 | 0.1087 | |
|
| 0.0848 | 7.0 | 455 | 0.1098 | |
|
| 0.0772 | 8.0 | 520 | 0.1113 | |
|
| 0.0718 | 9.0 | 585 | 0.1123 | |
|
| 0.069 | 10.0 | 650 | 0.1126 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.0 |
|
- Transformers 4.45.1 |
|
- Pytorch 2.5.0+cu124 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |